Search results

Search for "dielectric" in Full Text gives 450 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia 10.3762/bjnano.11.103 Abstract High permittivity and breakdown strength are desired to improve the energy storage density of dielectric materials based on reinforced polymer composites
  • excellent dielectric properties with high permittivity (25.2) and low loss (0.04) at high frequency (106 Hz). A thick PTh encapsulation layer on the surface of the BTO nanoparticles improves their breakdown strength from 47 to 144 kV/mm and the energy storage density from 0.32 to 2.48 J/cm3. A 7.75-fold
  • increase in the energy storage density of the BTO-PTh nanoparticles is attributed to simultaneously high permittivity and breakdown strength, which are excellent for potential energy storage applications. Keywords: barium titanate (BaTiO3) nanoparticles; breakdown strength; dielectric materials; energy
PDF
Album
Full Research Paper
Published 10 Aug 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • result is radically different from the data obtained for graphene/SiO2 [33]. In addition, hBN monolayers exhibit a high temperature stability, a low dielectric constant (ε = 3–4), and a high thermal conductivity [34]. The band gap of hBN is about 5.9 eV [35]. Furthermore, which is also important, hBN is
PDF
Album
Full Research Paper
Published 07 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • of both DBP layers on h-BN/Ni(111). The numerical algorithm is described in [28]. In the following, we will focus on the imaginary part of the dielectric function (ε'') only, which is depicted in Figure 2, as this physical quantity is indicative of the optical absorption. The comparison between DBP
  • illustrated in Supporting Information File 1, Figure S1. While the shift can be explained by a different dielectric environment of second-layer DBP molecules compared with those in the first layer, the new optical species can be clearly assigned to the fingerprint of DBP aggregates. The similarity of the
  • background. Imaginary part of the dielectric function obtained from the differential reflectance spectra of 1 MLE DBP on h-BN/Ni(111) (blue: substrate temperature = 25 °C, green: substrate temperature approx. 170 °C). Black dashed lines mark the spectral position of the S0→S1 transition. (a) LEED image
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • the reflection spectra for both Е||с and Е⟂с polarization cases at 300 K. The calculations showed that for the polarization Е||с the background dielectric constant (εb) is equal to 7.5, the energy of the transversal exciton (ωТ) is 1.192 eV, the longitudinal-transversal splitting (ωLT) is 15 meV, the
  • effective mass (μ*) is calculated for the excitons A, B, C and D. For excitons A and B when the background dielectric constant is εb = 7.5 and the binding energy is Ry = 130–136 meV the reduced exciton mass is μ* = 0.56m0. For the exciton series C at εb = 7.5 and at the binding energy Ry = 82 meV, the
PDF
Album
Full Research Paper
Published 16 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • permittivity and system volume, respectively. The relative dielectric constant, εr, is related to the susceptibility, χ, as [26][27]: The photocurrent is calculated by first-order perturbation theory in the framework of the Born approximation. In short, light–electron interaction is added to the Hamiltonian as
PDF
Album
Full Research Paper
Published 15 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • , require either large amounts of chemicals or longer synthesis times, or both [1]. Microwave synthesis has become popular in the last three decades as an alternative route for synthesizing molecules and materials at a significantly shorter time scale [2][3][4][5][6][7][8]. Dielectric heating under
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • aims of the present work were to investigate and improve the gas-sensing parameters of nanostructured Te films by using a mechanical nanostructuring approach. Crystalline and amorphous Te films were grown, respectively, on glass or porous, nanostructured, dielectric substrates. These two physically
  • time delay between measurements was 2 s, which was, simultaneously, much smaller than the sensor response time and much higher than the assessed dielectric relaxation time value. In order to transform the resistance signal into a voltage signal, the sample was connected in series to a load resistance
  • a study regarding two different types of nanostructured Te films physically built either in the form of nanocrystals, grown onto flat substrates, or vitreous Te, deposited onto nanostructured (porous) dielectric templates. It was expected that the physical properties, including the adsorptive ones
PDF
Album
Full Research Paper
Published 10 Jul 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • active nanoelectronic devices. Kelvin probe force microscopy (KFM) is a technique used to quantitatively characterize such electrical properties [1][2][3]. It is applied to map material compositions via changes in the work function, to localize charge distributions in dielectric samples [4][5], and to
  • properties of tip and sample, e.g., the dielectric properties of a sample or the quantum capacitance [14]. Furthermore, this signal can be used to adjust the sensitivity of the KFM feedback loop [15]. Open-loop KFM techniques exploit the relationship of the contributions at ωm and 2ωm. Namely, Ulcpd can be
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • present, where the equilibrium average lattice vibrational amplitude is reduced; hence the frequencies of the modes here in the out-of-plane direction will blue-shift as thickness increases [37]. The red-shift of the mode as thickness increases is attributed to dielectric screening effects of the long
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • thermal expansion (CTE) of the polymer template is much higher than the CTE of the dielectric layer. Here, a novel dry-blending method is described in which SiO2 nanoparticles are filled into a grooved silicon template, followed by permeation of polydimethylsiloxane (PDMS) into the SiO2 nanoparticle gaps
  • (analytical grade). Poly(methyl methacrylate) (PMMA) as the dielectric layer was used as purchased from MicroChem, with a molecular weight of 350,000 and a concentration of 4% in anisole (analytical grade). Preparation of the PDMS/SiO2 composite template via dry blending The experimental procedure for
  • electrode alignment in the wet-blended template is that the CTE of the PDMS/SiO2 composite template is 214 ppm/°C, while that of the PMMA dielectric layer to be contacted is 115.2 ppm/°C [24]. The CTE of the PDMS/SiO2 composite template prepared via dry blending was 96 ppm/°C, which better matches that of
PDF
Album
Full Research Paper
Published 20 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • nanostructures, in which LSPR occurs in the visible spectrum. The frequency of LSPR depends on the size and shape of the nanostructures and the dielectric function of the surrounding medium [6][7][8]. Regarding a potential implementation, Ag nanoparticles are especially interesting because of their very high
  • ), instead as full spheres, is a novel approach in the present simulations. It is expected, that this procedure should lead to a better agreement with the experiment. The grid size for the computations was set to 4 nm (limited by the available computer memory). The dielectric function of silver and silicon
  • employed to calculate the scattering efficiencies for a single silver nanoparticle (described by the same dielectric function as previously), surrounded by air. This was done in order to describe absorption, scattering and overall extinction maxima as function of the size of the nanoparticles, since the
PDF
Album
Full Research Paper
Published 25 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • of the GNPs as well as on the dielectric properties of the medium surrounding the GNPs. These features are useful in many (bio)analytical applications including monitoring their stability (as described below) [25][26][46]. Size and shape of the GNPs (spheres, nanorods, nanoshells and nanostars) were
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • capacitive, dielectric, and impedance properties, such that the timescale of the applied bias voltage can strongly influence the result [55][56]. One additional material-related challenge, is that in some materials the measured current is already very small (this is also the case in tunnelling experiments
PDF
Album
Full Research Paper
Published 13 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • connected in series, each being a Al–AlOx–Al junction with a gap of about 400 µV. The charging energy, Ec = e2/2C, of each SIS contact (considering it to be a plate capacitor with dielectric constant ε ≈ 10, area 100 × 100 nm and distance between plates ≈2 nm) is about two orders of magnitude higher than
PDF
Album
Full Research Paper
Published 03 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • 2D materials can function as barrier materials to prevent copper diffusion into the underlying dielectric material. While there have been studies of single-atom adsorption at MoS2 [26][29] and the adsorption of larger nanoclusters of noble metals, [25] there is as yet no comprehensive study of the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • of semiconductor quantum dots [2]. Arrays of metallic nanoparticles or nanowires aligned on dielectric surfaces with nanoripples are ideal for research on plasmonics [3]. Ag nanoparticle arrays created on rippled silicon surfaces have demonstrated excellent sensing of molecules through surface
PDF
Album
Full Research Paper
Published 24 Feb 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • . Pure HDPE is an insulating material that has a characteristic dielectric behavior corresponding to a linear increase in AC conductivity with increasing frequency [24]. The electrical conductivity of the nanocomposites increased with increasing amount of GnP. The reason for this increase may have been
  • –85°, with a scanning speed of 0.03°/s. FTIR measurements were carried out with a Thermo Fisher Scientific iS10 infrared spectrometer in the range of 4000–650 cm−1 at room temperature. Broadband dielectric spectroscopy (BDS) measurements were conducted using a Novocontrol Concept 40 instrument with an
  • Alpha dielectric spectrometer supplied by Novocontrol Technologies GmbH. A BDS-1200 parallel-plate capacitor with two gold-plated electrodes was used as a test cell for the samples and provided by Novocontrol Technologies. The diameter and thickness of the samples was 20 mm and 0.5 mm, respectively. All
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • of the fabricated CSNs and Ag-modified hollow TiO2 nanostructures, images of their aqueous suspensions are also shown in the inset of Figure 4. As we have shown previously, coating of AgNPs with TiO2 leads to an overall increase in the refractive index of their local dielectric environment and, as a
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • directly followed by the onset of stable hysteretic traces without the need of any further dedicated electroforming procedure. We argue, that the indention of the tip to the surface layer reduces the effective thickness of the dielectric layer resulting in the down-scaling of the electroforming voltage to
PDF
Album
Full Research Paper
Published 08 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • as functionalized films with high dielectric constant, or, in the case of optical applications, this consists also in embedding different types of nanoparticles. In the first example, “Co-intercalated layered double hydroxides as thermal and photo-oxidation stabilizers for polypropylene”, the
  • fire retardancy and gas permeation in a low molecular weight epoxy resin [28]. Regarding specific applications, the dielectric properties were investigated by broadband dielectric spectroscopy (BDS) in “Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic
  • electronic devices” [29]. A combination of deposition techniques was used, chemical vapor deposition for parylene and RF-magnetron sputtering for silver nanoparticles. The content and size of the latter influences the dielectric characteristics of the resulting hybrid films. Such devices may find application
PDF
Editorial
Published 20 Dec 2019

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • kinds of resonators and two stubs which are side-coupled to a metal–dielectric–metal (MDM) waveguide. By utilizing numerical investigation with the finite element method (FEM), the simulation results show that the transmission spectrum of the nanosensor has as many as five sharp Fano resonance peaks
  • nanosensors, optical splitters, filters, optical switches, nonlinear photonic and slow-light devices. Keywords: Fano resonance; metal–dielectric–metal (MDM) waveguide; nanosensor; on-chip plasmonic structures; surface plasmon polaritons (SPPs); Introduction Surface plasmon polariton (SPP) is a unique
  • optical phenomenon which occurs in the coupling of electromagnetic waves with free electrons at the metal–dielectric interface [1]. It can overcome the classical diffraction limit of light. Based on this property, metal–dielectric–metal (MDM) waveguides have been designed and widely applied to manipulate
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • reflectance). In addition to PhC waveguides, metal–dielectric–metal (MDM) waveguides are very attractive for researchers because they can support surface plasmon polaritons (SPPs) and allow for the control of light at the subwavelength scale. MDM waveguides provide an effective approach to chip-scale photonic
  • the incident light. The other parameters are ε∞ = 3.7, bulk plasma frequency ωp = 1.38 × 1016 Hz, damping frequency γ = 2.73 × 1013 Hz. The dielectric in the waveguide is air. The ring resonator is filled with a dielectric with the constant εd. Temporal coupled-mode theory (CMT) is used to analyze the
PDF
Album
Full Research Paper
Published 11 Dec 2019

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • , the backscattering decay is by cubic order larger than the absorption decay. One possible reason could be that scattering is proportional to the square of the variation of the dielectric constant, while absorption is linearly proportional to the dielectric constant. Within the dipole approximation
  • , the absorption and scattering cross sections of a plasmonic nanosphere can be determined by classical Mie theory as: where, k is the wave vector, r is the radius of the particle, εp is the dielectric constant of the particle and εm is the dielectric constant of the surrounding medium. Upon irradiation
PDF
Album
Full Research Paper
Published 06 Nov 2019

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • the skin even under mechanical stress is beneficial to fight pollution factors. The lipid particles adhere onto the skin as any nanosized particle does and form a film. This film formation can be followed by measuring the dielectric constant of the skin, using a Corneometer® (Courage + Khazaka
  • Electronic GmbH, Germany) [26]. The probe determines the dielectric constant, D, of the skin through a condenser in the probe. An insulator medium in the condenser reduces the measured D value. For example, D is 0 for a complete insulator (vacuum), about 5 for lipids and organic liquids, and 80 for pure
  • remain on the skin (right arm). Determination of the relative film thickness by measuring the dielectric constant D on skin. Probe readings of untreated skin and skin with applied increasing concentration of lipid particle suspension; reproduced with permission from [27], copyright 2013 Euro Cosmetics
PDF
Album
Review
Published 04 Nov 2019
Other Beilstein-Institut Open Science Activities