Search results

Search for "electrodes" in Full Text gives 574 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • ) to (II) [15][16], results from previous work that the substrates in an STM setup act as electrodes at which manganese porphyrins can be reduced [6][7][8], and the fact that also cobalt porphyrins can accept electrons from a HOPG surface in a liquid-STM setup [17][18]. While we have demonstrated that
  • of the chloride counterion for the redox reactivity of MnTUPCl. To investigate the influence of the nature of the used electrodes, we varied the sample surfaces (HOPG and Au(111)) and the tip material (Pt90Ir10, Au and W). A summary of these experiments is given in Table 1. Additional currents were
  • surface effect is highlighted by the observation that the magnitude of the observed currents is typically not mirrored when the sign of the applied bias voltage is switched (Table 1), indicating that when the two redox reactions occur at different sample electrodes this gives rise to different reaction
PDF
Album
Full Research Paper
Published 24 Aug 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • concentrations below the limit is also hazardous. Hence, it is essential to sense Cd(II) in the picomolar (pM) range well below the specified WHO limit. The ion-selective electrodes (ISEs) fabricated by [7] are stable and precise for HMI detection, but the measurement requires by laboratory equipment. Sensors
PDF
Album
Full Research Paper
Published 18 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • ]. Theoretical studies suggest a minimum distance of around 0.37 nm in order to enable reversible intercalation of sodium ions [14]. Therefore, the use of less crystalline carbon electrodes in SIBs cannot be avoided [15]. The lower gravimetric energy density compared to LIBs (because of the higher specific
  • phase separation during the preparation [28][29]. After grinding for preparation of the electrodes, however, the monolithic structure was lost (Supporting Information File 1, Figure S6). The reason why HT6 (Figure 1f) shows smaller particle diameters than the other carbons (Figure 1a–e) can be explained
  • sorption. Apparently, the absolute quantification of porosity is questionable and the most accurate results may depend on how well the gas fits the studied material. Relative differences for similarly prepared materials may be helpful for the evaluation of HCs for application as anode electrodes in LIBs or
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • details are given in the Experimental section at the end of this paper. Similarly to other optothermal trap designs [31][32], the approach is free of any prior modifications of the substrate such as electrodes, microchannels, biochemical or local inhomogeneous surface modifications and can thus be
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • in a scanning tunneling microscope, requires a metal electrode. To (partially) preserve the molecular properties the molecule–electrode coupling has to be properly designed. An elegant way is to clamp the molecule between electrodes via single-atom bonds at opposing sites of the molecule while the
  • molecule is freely hanging between the electrodes [7][8][9][10]. While these configurations give access to important transport properties [11][12][13], they do not allow for imaging molecular properties with intramolecular resolution [14]. The latter requires the molecules to be flat lying on a surface. To
PDF
Album
Full Research Paper
Published 20 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • channel is made of a large number of GNRs of the same type arranged in the XY plane in a parallel fashion, and the device channel in the Y direction is periodic. A finite number of GNRs, each with a constant length, is placed between the electrodes in X direction. The electrodes and the channel are made
  • of the same GNR type. Also, we consider the electrodes have n-type doping. The left- and the right-hand edge of the electrodes are shown in the figure with black lines. Figure 1e shows a typical GNM-based device where nanomesh channel with graphene contacts are introduced to be used in our
  • is about 5 nm. The electrodes on either side of the graphene and GNM devices are made of graphene. The electrodes in all three types of devices are n-type doped. Computational Method In the first section of calculations, we perform DFT calculations by using ATK software with linear combination of
PDF
Album
Full Research Paper
Published 15 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • performed using a DRONE–YM1 (Burevestnik, Russia) diffractometer with Fe Kα radiation. The rotational velocity of the scintillation counter was set to be either 2 or 4°/min. For the electrical and gas-sensing characterization, the samples were supplied with symmetrical gold or platinum electrodes
  • , identified in our preliminary works as ohmics [25][26], which form electrically transparent contacts with Te. The gold or copper wires were then attached to the electrodes with a silver paste. Figure 1A shows the surface morphology of a Te film grown on a Pyrex glass substrate at a rate of 10 nm/s. As shown
PDF
Album
Full Research Paper
Published 10 Jul 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • and 70 μg·cm−2. In both cases, the composition achieved is near the optimal 1:1 ratio of Pt to Ir. The electrodes based on the thermal decomposition method have been used and characterized in the past [6][21], and the material from the ALD method has been investigated extensively in [22][23]. In
  • used here by a factor of approximately 70. The small diameter of the pores, however, means that they are not accessible to all coating methods. In particular, we have observed that thermal decomposition coating of anodized felts yields electrodes of poor electrocatalytic performance. In contrast to
  • decomposition method) a somewhat lower current density for a very much lower noble metal coating. In other words it shows an activity per gram of noble metal improved by a factor of seven in comparison to the electrodes prepared with the thermal decomposition method. Of course, this result does not imply an
PDF
Album
Full Research Paper
Published 22 Jun 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • are characterized by small critical current densities (significantly smaller than the depairing current density of superconducting electrodes) and a hysteretic IVC (the latter is related with the large capacitance of the insulator layer), which restricts their applicability. Elimination of hysteresis
PDF
Album
Full Research Paper
Published 02 Jun 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • Telecommunications, Xi’an 710121, China 10.3762/bjnano.11.53 Abstract Among the patterning technologies for organic thin-film transistors (OTFTs), the fabrication of OTFT electrodes using polymer templates has attracted much attention. However, deviations in the electrode alignment occur because the coefficient of
  • achieved the alignment of OTFT electrodes using the composite template. Keywords: coefficient of thermal expansion; dry blending; organic thin-film transistors (OTFTs); OTFT electrodes; PDMS/SiO2 composite template; Introduction Organic thin-film transistors (OTFTs) provide a platform to construct next
  • -generation large-area, light-weight, flexible, and stretchable optoelectronic applications [1][2], including flexible displays [3], electronic papers [4], sensors [5], and medical applications [6]. Fabricating high-performance OTFTs usually requires that the electrodes on the polymer template are precisely
PDF
Album
Full Research Paper
Published 20 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • were mixed with 5 wt % of PVDF and stirred overnight in NMP to form a thick paste. The paste was used to make a thin electrode film on carbon paper (1.5 cm × 1.5 cm) and dried in an oven at 60 °C. To fabricate two-electrode supercapacitors, two such electrodes were sandwiched between battery-grade
  • properties of the exfoliated MoO3 nanosheets were evaluated using a three-electrode configuration and are shown in Figure 3. Figure 3a shows the cyclic voltammetry (CV) measurement of the electrodes recorded between −0.8 and −0.1 V with a scan rate of 50 mV/s. Initially, pristine exfoliated MoO3 sheets were
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • ]. Further information about the set-up with control experiments regarding the origin of the signal can be found in [34]. The ESM measurements were performed on micrometre-sized single particles of a cross-section of the electrodes cut as specified above. Results and Discussion Cell and cathode
  • capacity loss from first charge to first discharge is attributed to surface layer generation (anode: solid electrolyte interface, SEI; cathode: solid permeable interface, SPI) on both electrodes, since they were rinsed before the full-cell assembly. After the first cycle, the capacity stays constant (not
  • to visualize volume expansion of the electrodes. These results were used to link the local volume expansion of the material to its local activity. Following this assumption, a decrease of the overall ESM signal with ageing would imply a decrease of the electrochemical activity of the Li-ions in the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • the surface area of the electrodes; and secondly, the Faradaic redox peaks in acidic CV curves, which is nearly absent under alkaline conditions. Under both conditions (alkaline and acidic), G-M1 shows the highest surface area and G-M4 showed the lowest. This systematic variation in the
  • Figure 3. The electrodes exhibit capacitive (double layer) behavior in N2-saturated electrolyte, while a sharp reduction peak corresponding to oxygen reduction in O2-saturated electrolyte is shown in all the cases. The intensity of the peak (peak current density) corresponds to the ORR process and varies
  • experiments were conducted using RRD electrodes where the disk current was kept at 0.358V vs RHE and the ring potential was kept at 1.5 V vs RHE. Figure 4d depicts the chronoamperograms of the ORR at the disk and H2O2 oxidation at the ring electrode for 1 h at 1600 rpm, which shows reasonable stability in the
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • charges. The latter can eventually reach the collection electrodes of the device. Here, the low-bandgap polymer PTB7 was used as the donor and the fullerene derivative PC71BM as the acceptor. In the BHJ configuration [26], the D and A materials should form two interpenetrated networks phase-segregated at
  • deposition system (Kurt J. Lesker) for deposition of Ca (20 nm, 1.0 Å∙s−1) and Al (100 nm, 2.0 Å∙s−1) top electrodes (10.18 ± 0.1 mm2). The electrical characterization was performed in a glovebox. Current-density–voltage (J–V) curves were measured using a Keithley 2400 source measure unit. The photocurrent
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • junctions. Finally we summarize the results in the last section (“Conclusion”). Model In this section we present the theoretical model we use in our studies. The geometry of the considered system is depicted in Figure 1. It consists of two superconducting electrodes and a pair of ferromagnetic interlayers
PDF
Album
Full Research Paper
Published 23 Jan 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • porous structure, the NiMoO4@Co3O4/CA ternary composite yields electrodes with an enhanced specific capacitance of 436.9 C/g at a current density of 0.5 A/g and an excellent rate capability of 70.7% capacitance retention at 5.0 A/g. Moreover, an advanced asymmetric supercapacitor (ASC) is assembled using
  • of the NiMoO4@Co3O4/CA electrode in a potential supercapacitor. The synthesized samples were used as working electrodes for electrochemical analysis. The electrochemical experiments were conducted by using a three-electrode testing system in a 2.0 M KOH solution. The reference electrode and the
  • rate (i ∼ v1/2) owing to the diffusion-controlled battery behavior. This is further confirmed by the linear change of the current of the CV redox peaks as a function of v1/2 (Figure S3, Supporting Information File 1). To further evaluate the charge storage ability of the electrodes, galvanostatic
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • transport phenomena in a quantum dot coupled to pure monolayer graphene electrodes under external magnetic fields for finite on-site Coulomb interaction. The system is described by the pseudogap Anderson Hamiltonian. We use the equation of motion technique to determine the retarded Green’s function of the
  • value even at the Dirac point. The influence of the on-site Coulomb interaction and the magnetic field on the transport properties of the system shows a tendency similar to the previous results obtained for quantum dots connected to metallic electrodes. Most remarkably, we find that the Kondo resonance
  • be realized by a molecular junction or a single quantum dot (QD) or many QDs in a particular arrangement coupled to charge reservoirs by metallic [10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31], ferromagnetic [32][33][34][35] or graphene electrodes [36][37][38
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • Alpha dielectric spectrometer supplied by Novocontrol Technologies GmbH. A BDS-1200 parallel-plate capacitor with two gold-plated electrodes was used as a test cell for the samples and provided by Novocontrol Technologies. The diameter and thickness of the samples was 20 mm and 0.5 mm, respectively. All
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • hybrid systems such as batteries [6], electrodes [7] and photodetectors [8]. In 1958, Hummer and Offeman developed a chemical method to synthesize graphene oxide by acid treatment of graphite [9]. The graphene oxide thus obtained contains oxygen functional groups (–CO–, –COC–) on the surface and edges of
  • , suggesting that the samples have ideal capacitor characteristics. However, the H-rGO sample shows a higher current density and hence a higher specific capacitance than rGO. The calculated specific capacitance values from the CV of the rGO and H-rGO electrodes at 5 mV·s−1 are 7 (not shown) and 139 F·g−1
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • use. The electrochemical deposition of antimony at the Au electrode was done in 0.25 mM Sb2O3 (99.999%, Aldrich) and 0.5 M H2SO4 electrolyte. A Au(111) electrode and an antimony-modified Au(111) electrode were used as working electrodes for Mg deposition measurements. Magnesium foil was used as a
  • cannot again be deoxidized in the potential range and time scale of the experiment. Figure 2 shows the cyclic voltammograms of Sb species on Au(111) electrodes which was induced by immersing the electrode surface into the Sb-containing electrolyte for 1, 3 and 5 min at open circuit potential in 0.1 M
  • . Magnesium deposition/dissolution on Au(111) with Sb-modified electrodes was investigated in MACC. Interestingly, at the Sb-modified Au electrode, a cathodic peak appears at 400 mV more positive than the onset potential of bulk deposition at the Au electrode. We propose that this potential shift is due to
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • ). Fabrication and sensing test of gas sensors The hollow spheres of pure ZnFe2O4 or ZnFe2O4/rGO powder were mixed with deionized water to obtain a paste, which was then manually uniformly coated onto an Al2O3 ceramic plate (C-MAC Micro Technology Company, Belgium) equipped with heating electrodes (Pt) and gold
  • electrodes (Au) to fabricate sensing films. Subsequently, the sensors were dried at 120 °C for 12 h, and after further aging for 24 h at 180 °C, a series of ZnFe2O4/rGO gas sensors (different mass content of rGO: 0, 0.1, 0.25, 0.5 and 1 wt %) were obtained. Figure 1 is the schematic image of an electric
PDF
Album
Full Research Paper
Published 16 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • conductive network [14][15][16]. Ag NWs are a promising material for flexible transparent electrodes [17]. Plasmon propagation and the optical properties of Ag and Au NWs make them attractive for nanophotonics as waveguides for visible light [18][19][20][21][22][23]. In all these applications, NWs may
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • of charge carriers has been observed in field-effect transistors (FET) made from this compound [32]. Anthracene-2-thiol, obtained by functionalization of anthracene with a thiol group, was used to fabricate SAMs on the top of Au bottom electrodes, which resulted in a beneficial effect on the
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • +–halide–organic molecule is formed that allows a charge transfer between the metal surface and the molecule leading to a resonant Raman scattering effect [6][7][8]. Evidence for surface complexes were provided by several SERS experiments on silver electrodes [3][8], but also on colloidal silver
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019
Other Beilstein-Institut Open Science Activities