Search results

Search for "fabrication" in Full Text gives 859 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , Romania Nicolae Testemitanu State University of Medicine and Pharmacy, 165 Stefan cel Mare si Sfant ave., MD-2004, Chisinau, Republic of Moldova 10.3762/bjnano.13.123 Abstract This research work focuses on the fabrication and study of a series of nanocomposites consisting of two types of hydroxyapatite
PDF
Full Research Paper
Published 12 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • in silico-based C. amboinensis cytb gene-specific probe sequence, as well as the use of a nanocomposite on a fabrication platform resulted in a simple, selective, and sensitive electrochemical DNA biosensor for the detection of targeted BT. The utilisation of a AuNPs/Gr nanocomposite enhanced the
  • muscle samples. BTS stands for box turtle DNA isolated from a meat sample; ds: double stranded; CWS: cow sample, BFS: buffalo sample, HRS: horse sample, and DKS: duck sample. Step-by-step fabrication procedure of the electrochemical DNA biosensor for the detection of the BT cytb gene. Figure 8 was
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • applications. Experimental Samples We study samples containing one or several straight strips with embedded Nb/NbSi/Nb overlap JJs connected in series. The samples were fabricated by Oliver Kieler (Braunschweig, Germany) and were measured in AlbaNova University Center (Stockholm, Sweden). The fabrication is a
  • parameters. Those should be accounted for in the design and fabrication of large JJ arrays. Proper design, in which this effect is maximally manifested, allows for increasing the output radiation power, which will facilitate the implementation of JJ arrays in practical applications. Appendix: Additional
  • . Gain factor from the interaction of outer and inner arrays in sample-2. Acknowledgements The authors are grateful to Oliver Kieler for sample fabrication. Funding The work was supported by Center of Excellence ”Center of Photonics” funded by The Ministry of Science and Higher Education of the Russian
PDF
Album
Full Research Paper
Published 06 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • fabrication of the device requires removing the silicon handle and BOX layer twice (it makes the structure symmetrical), which makes the fabrication challenging to some extent. However, the simulation results show that the symmetrical structure of the device can improve the performance of the sensor. The h
PDF
Album
Full Research Paper
Published 25 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • fabrication techniques and enhancement in Bi-based semiconductor photocatalysts. Various environmental applications, such as H2 generation and elimination of water pollutants, are also discussed in terms of semiconductor photocatalysis. Future developments will be guided by the uses, issues, and possibilities
  • photocatalysts in eco-friendly applications on a large scale. Bi-based nanomaterials as semiconductor photocatalysts are one of the study’s primary goals, as is the use of Bi-based nanomaterials for wastewater treatment, hydrogen generation, and photocatalytic degradation. Fabrication methods, reliability
  • -based semiconductors, especially oxide semiconductors such as Bi2O3, BiVO4, and Bi2WO6, have n-type properties with electrons as the majority carrier. Recent research suggests that the synthesis route can shift the conductivity types of Bi-based materials [45][51]. Fabrication routes Synthesis
PDF
Album
Review
Published 11 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • organic–inorganic hybrid films for applications in several technological application areas, including packaging/encapsulation, electronics, batteries and biomedical applications [1][2][3][4]. MLD is very similar to the widely used atomic layer deposition (ALD) technique, which involves the fabrication of
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • roll-to-roll process for the fabrication of a thin polymeric film covered with nanofur from polypropylene. Our process enables structuring of large areas of the order of square meters using industry standard machinery. This opens up many possible applications for nanofur that could previously not be
  • durable. Other options for chemically treated superhydrophobic surfaces, such as the use of fluorinated silanes, fluoropolymer coatings, and carbon nanotubes, exist, but are either rather costly to apply and/or potentially harmful to the environment. A much simpler and cheaper option is the fabrication of
  • polymeric nanofur [16]. Its surface is covered with many tiny, hair-like structures and has a high potential for up-scaling because it can be produced with minimal, very simple and cost-effective tools and molds [17]. On the lab scale, the fabrication of nanofur can be easily achieved with sand-blasted
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

A super-oscillatory step-zoom metalens for visible light

  • Yi Zhou,
  • Chao Yan,
  • Peng Tian,
  • Zhu Li,
  • Yu He,
  • Bin Fan,
  • Zhiyong Wang,
  • Yao Deng and
  • Dongliang Tang

Beilstein J. Nanotechnol. 2022, 13, 1220–1227, doi:10.3762/bjnano.13.101

Graphical Abstract
  • , China Sichuan Jiuzhou Electric Group Co., Ltd, Mianyang 621000, China School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China State Key Laboratory of Optical Technologies for Micro-fabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu
  • usually employ simple binary amplitude and binary phase modulation [14][15] to modulate the incident optical field, thus realizing a specific coherent superposition of the output optical field. This modulation method is relatively simple and accessible for fabrication; however, it significantly weakens
PDF
Album
Full Research Paper
Published 28 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • group of the analyte and pyridyl sites in MIPs. The MIP-based selectors on the QCM surface can be achieved not only by in situ polymerization but also by using premade MIP nanoparticles. Krozer et al. reported the fabrication of QCM chiral sensors by physically entrapping MIP nanoparticles into a spin
  • MOFs. Yang et al. reported the fabrication of chiral UiO-MOF-derived QCM sensors for efficient discrimination of cysteine (Cys) enantiomers (Figure 8), of which the ʟ-type is vital in biological processes but the ᴅ-type has a hazardous effect [100]. The chiral UiO-MOF sensors (ʟ- and ᴅ-UiO-tart) were
  • ) nm. The QCM measurements exhibited a 690 ng/cm2 difference between the adsorption amount of ᴅ- and ʟ-tartaric acid, and it proved the enantioselective adsorption on the chirality imprinted Al2O3 films. Yemini et al. reported the fabrication of Zn/Cys chiral nanostructures by molecular layer
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • -directional selective manner, they form a randomly oriented nanoscale network structure with high surface area, which is convenient for fabrication and beneficial for MEGs. There are various methods to fabricate nanoarchitectonics, including but not limited to electrostatic spinning, lyophilization
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • microneedle patches, their manufacturing techniques, and the obtained therapeutic efficacy. In addition to a number of advantages, the questionable aspects related to this dosage form are also discussed. 2 Types of microneedle: materials, fabrication and properties for drug delivery 2.1 Microneedle system
  • fabrication, the drug loading technique, and the mode of drug delivery [117]. Concerning the materials used to manufacture the microneedle arrays, the range of available substances is wide. The first material employed for this purpose was silicon. It is important to note that it offers versatile properties
  • : fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug”, by G. Roy et al., Drug Development and Industrial Pharmacy, published on 11 Jun 2020 by Taylor & Francis Ltd), reprinted by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com). This content is
PDF
Album
Review
Published 24 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • the fabrication of the MgO@g-C3N4 heterojunction via one-step pyrolysis nor on the photocatalytic pathway of the MgO@g-C3N4 heterojunction for photocatalytic NO removal under visible light. In this study, a MgO@g-C3N4 heterojunction was synthesized via a one-step pyrolysis method using commercial MgO
  • and 5% MgO@g-C3N4 in the visible and UV range, which increased the photocatalytic performance under visible light irradiation. The PL results confirmed the presence of vacancies in the MgO@g-C3N4 heterojunctions. MgO@g-C3N4 is promising for large-scale fabrication via this simple and fast method. This
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • , however, are complex, and their fabrication and assembly typically require considerable efforts. For this reason, all our sample/cantilever holders use the same four laser-cut metal parts as base plates (m1–m4) connected via a simple ceramic center piece (Figure 7f), on top of which different assemblies
  • modulus of silicon, respectively; L, w, and t are the length, width, and thickness of the cantilever, respectively. While the first two geometrical dimensions are well-defined by the fabrication process and can easily be measured by electron microscopy, the thickness t of the cantilever is best obtained
PDF
Album
Full Research Paper
Published 11 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • glycol [6], phytic acid [7], phenylenediamine [8], ammonium citrate [9], citric acid [10], ethylene diamine tetra acetic acid [11], carbon nanotubes [12], and graphite [13]. Additionally, graphite, nanodiamonds, and activated carbon can be applied as precursor for the fabrication of CDs [14]. Meanwhile
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • fabrication of scaffolds for cartilage tissue engineering applications. The 2 cm × 2 cm PLGA electrospun nanofibers were prepared by electrospinning which incorporated those with hydroxybutyl chitosan hydrogels. The polycaprolactone scaffold was 3D printed and reinforced with hydrogel scaffolds to mimic the
  • internal structure of cartilage. Human mesenchymal stem cell differentiation in 3D-printed scaffolds showed the differentiation ability of the cartilage tissue [128]. Future approaches Nanomaterials are widely used in the fabrication of scaffolds as they significantly mimic the extracellular matrix and
PDF
Review
Published 29 Sep 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • the desired shape. A natural extension to the development of polymer photonic structures consists of the fabrication of hybrid (i.e., metal-dielectric) resonant structures [15] with the potential to enhance the light–matter interactions of such SPEs. This work will focus on finding an optimal design
  • for a hybrid plano-concave microcavity, containing a multilayer of hBN hosting a SPE (Figure 1), by using analytical methods and FDTD simulations. Fabrication design steps are first shown for our microcavity, afterwards we found the range of geometrical parameters necessary for our stable resonator
  • , followed by a transfer matrix model used to find the resonant modes of the microcavity, which are then corroborated by FDTD simulations. Results and Discussion Fabrication design Hybrid plano-concave microcavity By using a quarter-wavelength DBR with a multilayer 2D material on top (Figure 2a), we designed
PDF
Album
Full Research Paper
Published 27 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • nanophotonics [3]. They can also serve as catalysts for controlled chemical vapour deposition [4]. While gold is the most widely used material for fabrication of plasmonic nanostructures, silver can offer a less expensive alternative [5][6][7]. Electron beam (EB) lithography is a popular method for the
  • . However, some studies suggest that this process may not always be so simple. Ueda and Yoshimura [27] reported the fabrication of free-standing nanowires on various metal surfaces (Al, Ag, Au, Cu, Pt, Ta, Ti, and W) via EBID with pump oil (hydrocarbons) as a precursor. It was observed that the substrate
PDF
Album
Full Research Paper
Published 22 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • , antimicrobial, and antibiofouling properties, including the formation of an oriented monolayer of bacterial flagellin proteins on hydrophobic surfaces [73], a reduction of oral bacteria adhesion on dental brackets by more than 95% due to a reduced surface free energy [74], and the fabrication of antifouling
PDF
Album
Review
Published 08 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • triplicate. The mass of aptamers bound to each protein was calculated and the results were plotted using the software Graph Pad Prism 5. Statistical analysis was performed using the Kruskal–Wallis test with Dunn’s post-test. Device fabrication and electrical characterization We carried out the electrical
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • required, including logic gates [19][20][21][22][23], programmable logics [16], non-dissipative biasing [1], and random access and cache memories [17][24][25][26][27][28]. From the fabrication point of view, it is strongly desirable to utilize a universal tunable ferromagnetic material for every
PDF
Album
Full Research Paper
Published 25 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • cycles, while PMMA-15k promoted depolymerization, which allowed for a complete removal of PMMA residues without the need for any post-treatment. An XPS analysis confirmed the cleanness of the optimized process. We validated the impact of the optimized PMMA solution on the mass fabrication of arrays of
  • . Keywords: 2D materials; graphene transfer process; large-scale fabrication; microelectronics; poly(methyl methacrylate); Introduction Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the focus of an intense research effort aimed at developing a new class of innovative
  • devices and applications [1][2][3]. Among the production methods, chemical vapor deposition (CVD) made substantial progress over the years and now guarantees high-quality standards for the growth of batches of graphene samples over wafer-scale areas [4][5][6]. This progress allowed for the fabrication of
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • large variety of functional materials [10][11][12][13][14][15]; in particular, for the fabrication of specific catalytic materials [16][17][18][19]. Recently, several bismuth-based photocatalysts have drawn extensive attention owing to their unique band structures and excellent stability against
  • limited owing to the aggregation of these phases, resulting in the decrement of active sites during photocatalysis [27]. In order to further increase the effectiveness of these heterostructures, the fabrication of efficient TiO2 materials for a homogeneous dispersion of Bi2WO6 through its morphological
  • bionics procedure using natural cellulose can be used in the fabrication of Bi2WO6/TiO2 composites. However, the relationship between the structure and activity of these compounds still remain to be deeply investigated. In this work, cellulose-derived Bi2WO6/TiO2-NT heterostructured composites were
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • the fabrication of a robust, nonenzymatic electrochemical-sensing electrode modified with electrochemically reduced graphene oxide (ERGO) to detect PT residues in environmental samples (e.g., soil, water) as well as in vegetables and cereals. The ERGO sensor shows a significantly affected
  • activities at the electrode surface, potentially leading to the fabrication of nonenzymatic electrochemical nanosensors for detecting specific OPs on the electroactive surface [2][11][17][18][19]. For example, electrochemical sensing platforms modified with zirconia-embedded PEDOT membrane, graphene
  • methyl paraoxon in vegetables [23]. Recently, Jangid et al. (2021) also described the electrocatalytic activity of fenitrothion on glassy carbon electrodes modified with nitrogen and sulfur co-doped activated carbon-coated multiwalled carbon nanotubes [24]. Nevertheless, the fabrication process of the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • a Si(111) substrate heated to 800 °C. In a second fabrication step, aluminium/aluminium oxide/copper tunnel junctions were fabricated on the EuS film using e-beam lithography and shadow evaporation. The nominal aluminium film thickness was d = 10 nm. The differential conductance g = dI/dV of the
  • fabrication, magnetic properties, and experimental procedures can be found in [42][43]. Examples of the conductance spectra measured for different applied fields in one of the junctions are shown in Figure 5a. At small fields, the spectra exhibit a well-defined gap with negligible subgap conductance
  • during sample transfer between our two fabrication steps. Lacking a microscopic model, we have attempted to fit the field dependence of δφ with a Brillouin function. The fit is shown as a line in Figure 5b. It is in reasonable agreement with the data up to about 0.6 T, with an effective angular momentum
PDF
Album
Full Research Paper
Published 20 Jul 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • makes the fabrication quite difficult. In this paper, motivated by the investigation in [28], a tunable graphene absorber, which consists of a graphene monolayer on a dielectric grating backed with a substrate, is designed and investigated. The paper is arranged as follows: First, we present the
  • . Therefore, the geometric tolerance should be precisely controlled inside a certain range during fabrication. We investigate the influence of geometric parameters on the absorption spectra so as to provide a useful guidance for practical fabrication. The results are shown in Figure 6. As shown in Figure 6a
  • sensitive to the change of w than to that of d and h. In general, the ultrasharp absorption can be maintained with a large tolerance regarding the geometric parameters, which is beneficial for real-life fabrication. As the surface conductivity of the graphene sheet is proportional to the Fermi level
PDF
Album
Full Research Paper
Published 19 Jul 2022
Other Beilstein-Institut Open Science Activities