Search results

Search for "metals" in Full Text gives 604 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • holds also for layered materials. Single-molecule prototypes or molecular nanostructures are often prepared on metals, which usually provide a sufficiently low diffusion barrier for efficient self-assembly and simultaneously allow for in-depth analysis through atomically precise tools from the family of
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • much lower compared to the energy of sputter-deposited metals. However, it is possible that this unintended, but sometimes useful, carbon deposition can be reduced by HIM imaging in ultra-high vacuum [34][35][36]. The cell structures shown in the HIM images of Figure 3a are sharply resolved over tens
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • flexible conductive materials, metallic materials (e.g., copper, zinc, silver, and gold) are still frequently used as electrodes for flexible electronics due to their excellent electrical conductivity. By using the Kapton tape to attach soft stencils to paper, various metals can be deposited through the
  • usually allow a better control over the material thickness, yielding more homogeneous structures. The vacuum evaporation is applicable to a variety of metals at a high rate of up to 50 nm·s−1; however, it requires expensive equipment and high-vacuum conditions. The sputtering can be conducted by using
  • 2D P-TENGs in self-powered electrochemistry Metal corrosion is a common phenomenon and a considerable amount of resources are necessary in order to prevent it. Therefore, the development of technologies to protect metals against corrosion has a significant economic importance and has attracted
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • natural source for the removal of heavy metals from soils and underground water [308]. The removal of heavy metals takes place by phytoremediation strategies such as phytoextraction, phytofiltration, phytostabilization, phytovolatilization, phytodegradation, rhizodegradation, and phytodesalination [309
PDF
Album
Review
Published 25 Jan 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • studies on the composition-dependent control of the metal nanoparticle properties showed that even the combination of two metals into a single nanoparticle (i.e., the formation of a bimetallic nanoparticle or the so-called nanoalloy) can lead to very important synergistic effects in areas such as
PDF
Album
Full Research Paper
Published 19 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • surface in order to avoid charging. Charge compensation can even be considered to be necessary for conductive metals, because the high surface sensitivity of the HIM would only reveal the metal layer and not the fine detail of the surface ultrastructure without the use of the flood gun. From a practical
PDF
Album
Review
Published 04 Jan 2021

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • , the electron–hole recombination can be inhibited by loading metals, such as Ni [12], V, Fe [13], Ag [14], and Cu–Ni [15], on the TiO2 surface, which accelerates the formation of hydroxyl radicals and, consequently, improves the photocatalytic activity of TiO2. In contrast, the doping of TiO2 with
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • acid (TA) as complexing reagents and HNO3-acidified water as solvent, we found only amorphous products, as observed in the X-ray diffractograms in Figure 1. This result can be attributed to the incorporation of Lewis-acidic metals, such as bismuth, into the amorphous silica framework during the
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • respect but are thermally unstable, for instance, ClAuCO and ClAuPF3 [11][12][13]. Therefore, it is desirable to design new stable precursors that enable the deposition of pure metals. In this work, two novel platinum precursors (Pt(CO)2Cl2 and Pt(CO)2Br2) were synthesized and tested. Both Pt(CO)2X2
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • quantum-mechanical transparency of the interface, TF, was assigned. Here, they considered the effect of the mutual solubility of the metals (of a superconductor and a ferromagnet) on the quantum-mechanical transparency. The transparency parameter of the interface for completely non-wetting metals, such as
  • films. For highly mutually soluble metals, such as vanadium and iron (solubility of about 30% at room temperature), the quantum-mechanical transparency parameter is many times higher, TF ≈ 1.6. However, if the structural quality of the films requires deposition on a substrate heated to 100–300 °C, there
  • ), the transparency parameter is TF ≈ 2 and is the highest of all possible metal pairs. It is possible that high transparency is facilitated not only in the mixing layer at the interface between extremely thin film materials, but also by a good matching of the band structures of two metals (see the study
PDF
Album
Full Research Paper
Published 24 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • , an electrical back contact is created between the microscope chuck and the sample. Results and Discussion The vertical PIN structure Figure 2 shows the surface topography of the cross section of the PIN diode. The different materials used (silicon substrate, epitaxial layers, oxides, and alloy metals
  • semiconductor layers as well as metals and dielectrics. The results and analyses shown highlight the differences and the complementarities of both signals. From the acquisition of the capacitance variation (∂C/∂V) and sMIM signals of the tip–sample nano-MIS, we could identify and localize the electrical
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • materials, such as ceramics or metals, but also of some polymers. Compared with other techniques providing information on the mechanical properties of a sample, notably force–distance curves, CR-AFM has a much shorter acquisition time. This compensates in part the incomplete theoretical understanding of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • small quantity of molecules can be observed here at all is attributed to surface-enhanced Raman scattering (SERS) [45]. This effect is most commonly observed on rough surfaces of noble metals [45] or at metal nanostructures [46], and it is utilized in surface-enhanced Raman spectroscopy [47]. There are
PDF
Album
Full Research Paper
Published 03 Nov 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • quasiparticle excitations using point contacts. This was clearly demonstrated for the first time by Yanson while studying electron–phonon interactions in metals [60]. When a current flows through Yanson point contacts, a unique condition for the manifestation of the quantum properties of these objects arises
  • manifestation of the energy parameters of this interaction in the electrical characteristics of the point contacts. Due to this phenomenon, the spectrum of the electron–phonon interaction in metals [5], superconductors [8][61], and even in more complex compounds such as organic conductors [62] can be easily
  • point-contact resistance. These changes are displayed in the dependencies of the Yanson point contact parameters. In the case of classical Yanson point-contact spectroscopy studies of electron–phonon interaction in metals, the energy-related processes are described by the current–voltage characteristic
PDF
Album
Full Research Paper
Published 28 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • in the calculations, the true PDOS will deviate and conclusions have to be drawn with care. However, the work function of CoO is, with 5.85 eV (1BL) and 6.01 eV (2BL) [47], significantly higher than that of most metals. Following the arguments of Yang et al. [48], a charge transfer into unoccupied
PDF
Album
Full Research Paper
Published 05 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • ), 10587 Berlin, Germany 10.3762/bjnano.11.132 Abstract Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence
PDF
Album
Full Research Paper
Published 01 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • nanocages with diameters ranging from 300 to 500 nm [55]. The solvothermal synthesis method is a technique used to prepare a variety of materials, such as metals, semiconductors, ceramics, and polymers. In this process, the chemical reaction takes place in a sealed vessel where solvents are brought to a
  • interaction with the bacterial cells [137]. For example, chemical groups can be grafted onto and metals can be adhered to these NPs. Mahmoudi and Serpoooshan developed silver-ring-coated SPIONs through the coating of monodispersed SPIONs with carboxylated dextran via the ligand exchange method followed by
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • metals (Au, Pt, Pd, Cu, and Ir) were investigated to derive a set of technologies as platform for specific applications. Especially, the shape of the 3D structures and the resulting reflectance have been investigated. The Si nanostructures fabricated using Au nanoparticles show a perfect light absorption
  • layer for the wet etching of silicon. The MACE process has been extensively studied over the last decade [13][14][15][16]. In theory, the process works with a wide range of noble metals. The main focus in research has been set on the noble metals gold (Au) and silver (Ag) [2][17][18][19]. Other studies
  • , we used images with a magnification of 100.000×, where each pixel has a size of 1.1 nm/pixel. The analysed area of each image has a size of 1024 × 703 pixel2, which represents 1126 × 773 nm2 = 0.89 μm2. Initially, the sputtered metals formed continuous films with randomly distributed pinholes at the
PDF
Album
Full Research Paper
Published 23 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • commercial production of fuel cell catalysts, especially the scarcity of noble metals and the insufficient electrochemical long-term stability. Even though the surface-to-volume ratio can be drastically increased by the use of nanoparticles instead of thin films, the amount of noble metal (usually platinum
  • group metals) required for electrode materials produced by conventional synthesis approaches is still cost-inefficient for broader commercial application [4][5]. Furthermore, since surfactants (capping agents) are typically applied in the traditional wet chemical synthesis of metal nanoparticles in
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • applied to a variety of problems in condensed matter theory, such as, the problem of weak Coulomb blockade in tunnel [19][20][21][22] and non-tunnel [23][24][25] barriers between normal metals or that of a dissipative phase transition in resistively shunted Josephson junctions [19][26][27][28]. In the
PDF
Album
Full Research Paper
Published 14 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • highly functional intermediate products for further processing [3][4]. The presence of droplets and dewetting phenomena are not only observed in aqueous and organic systems, but also in inorganic systems, such as liquid metals [5] and ultrathin layers [6]. The formation of metallic nanodroplets can be
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • . The F4PEN monolayer was essentially lying on Ag(111), and multilayers adopted π-stacking. Our study shed light not only on the F4PEN–Ag(111) interface but also on the fundamental adsorption behavior of fluorinated pentacene derivatives on metals in the context of interface energetics and growth mode
  • contribution polarization [11][44]. Perfluorination does not impact the orientation of PEN and PFP in the contact layer with clean metals, where both compounds are lying flat [9][30][31][47][48][49][50][51][52]. On Au(111), the coupling strength of both monolayers with the substrate is rather similar and
  • coinage metals, a downward bending of the fluorine atoms has never been observed [64]. In particular, this holds for PFP on Ag(111) [50] and F16CuPc on the same substrate [82]. Taking into account the error bar of our measurements, a lying adsorption geometry will be considered in the following. For a
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • magnetic properties of electrically conducting fluids are studied is called magnetohydrodynamics (MHD). Magnetic fluids, liquids, metals and mixtures containing water, salt and other electrolytes are examples of materials that can be investigated via MHD. Hannes Alfen was the first to introduce the term
  • Brownian motion and thermophoretic properties. Due to these features, nanoparticles are widely used in catalysis, imaging, energy-based research, microelectronics, and in other applications in the medical and environmental fields. These nanoparticles are composed of metals and nonmetals and are frequently
PDF
Album
Full Research Paper
Published 02 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • formed at the solution–solid interface, is a more of routine occurrence than an exception. Such structurally diverse monolayers are typically formed on solid substrates such as highly oriented pyrolytic graphite (HOPG), graphene, and metals such as Cu, Ag and Au and have been characterized using scanning
  • ], NaCl [40], CuN [41] and oxides [32][42] have been used. Typically, the ultrathin films of these wide band gap materials act as insulating layers while still allowing electron tunneling through them. Chemisorbed iodine layers have been used as passivating layers on metals such as Au for achieving
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • the resistance because of compressive surface stress when a large number of biomolecules bind to the microcantilever surface (Figure 4a,c,e) [47]. Figure 5 demonstrates the average change in piezoresistance of a sensor based on Au-Cys-DL-GC-coated cantilevers for different heavy metals (AlCl3, MnCl2
  • selectivity for Cd(II) than for other heavy metals. The average value of change in piezoresistance of the Au-Cys-DL-GC-coated microcantilevers is approximately 130–240 Ω for Cd(II) and 5–30 Ω for the other injected heavy metals. The total value of the average change in piezoresistance for a concentration of
PDF
Album
Full Research Paper
Published 18 Aug 2020
Other Beilstein-Institut Open Science Activities