Search results

Search for "solar cells" in Full Text gives 267 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Growth model and structure evolution of Ag layers deposited on Ge films

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Ewa Górecka,
  • Jakub Kierdaszuk and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2018, 9, 66–76, doi:10.3762/bjnano.9.9

Graphical Abstract
  • nm thickness has an imaginary part of permittivity lower than 1 within the 315–827 nm range [4]. Therefore, silver is widely used in plasmonic sensors [5][6][7], as substrates for surface enhanced Raman scattering (SERS) [8][9], as inclusion in solar cells [10][11][12] and in other plasmonic devices
PDF
Album
Full Research Paper
Published 08 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • to develop TiO2-based solar cells. Core/shell TiO2/CdSe NRs were also prepared by growing CdSe quantum dots onto TiO2 NRs at high temperature [42]. In this paper, we report an investigation on the synthesis of CdSe-NR-sensitized TiO2 nanoparticles and on the use of these materials for the degradation
  • this work stimulate the idea that CdSe/TiO2 composites may be of high potential for other applications, such as CdSe-sensitized TiO2 films for solar cells. TEM images of (a) TiO2, (b) CdSe nanorods and (c) the CdSe (2 wt %)/TiO2 composite. (d) HR-TEM image of CdSe nanorods associated to TiO2
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • possible to use ligands that do not require high sintering temperatures for temperature-sensitive substrates [46]. Layers of metal-based inks have been used to fabricate conductive electrodes, thin-film transistors, light emitting diodes, and solar cells [32]. Ultrathin films [47], arrays of interconnected
  • substrates to create highly conductive patterns for an electroluminescent device [42]. Yu et al. successfully used silver nanoparticle (Ag NP) inks to prepare grids for polymer solar cells by inkjet or flexographic printing [51]. Charge transport in spaced metal nanoparticle layers is strongly affected by
PDF
Album
Review
Published 07 Dec 2017

PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

  • Chengxi Zhang,
  • Weiling Luan,
  • Yuhang Yin and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2017, 8, 2521–2529, doi:10.3762/bjnano.8.252

Graphical Abstract
  • , including displays, solar cells, lasers, light-emitting diodes and white-light generation [1][2][3][4][5][6] due to their size-tunable optical and electrical properties and excellent ability to be processed in solution. Quantum dots have gained much attention due to their promising applications. There are
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2017

Changes of the absorption cross section of Si nanocrystals with temperature and distance

  • Michael Greben,
  • Petro Khoroshyy,
  • Sebastian Gutsch,
  • Daniel Hiller,
  • Margit Zacharias and
  • Jan Valenta

Beilstein J. Nanotechnol. 2017, 8, 2315–2323, doi:10.3762/bjnano.8.231

Graphical Abstract
  • photovoltaics, nanocrystalline Si is a promising material for the top cell of all-Si tandem cells that can theoretically reach efficiencies much above the Shockley–Queisser limit of 31% for single-junction solar cells [2]. Current injection into Si NCs can be utilized in Si-based light emitting diodes or
PDF
Album
Full Research Paper
Published 06 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • Xiao Shao Weiyue Xin Xiaohong Yin School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China School of Chemical Engineering
PDF
Album
Full Research Paper
Published 30 Oct 2017

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

  • Alicja Mikolajczyk,
  • Natalia Sizochenko,
  • Ewa Mulkiewicz,
  • Anna Malankowska,
  • Michal Nischk,
  • Przemyslaw Jurczak,
  • Seishiro Hirano,
  • Grzegorz Nowaczyk,
  • Adriana Zaleska-Medynska,
  • Jerzy Leszczynski,
  • Agnieszka Gajewicz and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 2171–2180, doi:10.3762/bjnano.8.216

Graphical Abstract
  • alters the rate of chemical reactions, when exposed to light (photocatalyst) [1]. TiO2-based NPs have already found wide applications as efficient photocatalysts for sterilization, sanitation, air and water purification systems, hydrogen production by water splitting, and dye-sensitized solar cells [1
PDF
Album
Full Research Paper
Published 17 Oct 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • photonic circuits, and solar cells [1][2][3]. Semiconductor nanowires have been a topic of intense research in the scope of third generation photovoltaic technology, with a predicted significant reduction of cost production [4]. Group III–V semiconductor nanowires are considered very promising materials
  • for application in solar cells owing to their high absorption, direct bandgap, high carrier mobility and well-developed synthesis techniques [5][6][7][8][9]. Among the group III–V semiconductors, GaAs is one of the most intensively studied materials and has a suitable bandgap energy value for solar
  • cells (1.519 eV for GaAs bulk at low temperature). Additionally, Ga is more abundant and less toxic than other elements (e.g., In and Cd, respectively) involved in other compounds commonly used in thin film-based solar cells like Cu(In,Ga)Se2 and CdTe. Bulk GaAs exhibits the zincblende (ZB) crystal
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • , Kaliskiego 2 Str. 00-908 Warsaw, Poland 10.3762/bjnano.8.208 Abstract Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the
  • interesting materials for application in dye-sensitized solar cells (DSSCs) and photocatalysis. In fact, it has been shown that plasmonic nanostructures can enhance the efficiency of DSSCs by four possible mechanisms [66]. The far-field coupling of scattered light and the near-field coupling of
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • of tens of nanometers, for example in polymer solar cells [59]. It is also worth noting that in both cases, thick and thin, there was a decrease in the average contact-resonance frequency for MTM compared to LAP. In macroscale tension testing, MTM has shown higher stiffness than LAP [11]. CRFM
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells
  • . Keywords: atomic force microscopy; cathode luminescence; scanning electron microscopy; silicon solar cells; transparent conducting oxide; X-ray diffraction; ZnO; Introduction Transparent conductive oxides (TCOs), with both high electrical conductivity and optical transparency, could be used as a
  • replacement for the metal contact in semiconductor devices. When applied to solar cells, it can eliminate the optical shading effect induced by the conventional metal contact thereby effectively increasing solar cell photocurrent and efficiency. Granular ZnO thin films grown by low pressure chemical vapor
PDF
Album
Full Research Paper
Published 15 Sep 2017

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • . Keywords: anti-aggregation; co-sensitization; dye-sensitized solar cells (DSSC); Förster resonance energy transfer (FRET); NIR harvesting; panchromatic absorption; Introduction The increasing demand for fossil-fuel energy sources and the intensifying environmental pollution have promoted an extensive
  • research for the development of efficient conversion technologies of clean and renewable energy sources. Solar energy has been considered to be the most promising sustainable and renewable energy source because of its quasi-unlimited supply. In the last decade, dye-sensitized solar cells (DSSCs) have drawn
  • significant attention as an alternative conversion technology for solar energy, besides conventional Si-based solar cells, because of its simple and less expensive processing and a wide range of potential applications [1][2][3]. Since the first invention of DSSCs by O’Regan and Grätzel in 1991 [4], a plethora
PDF
Album
Full Research Paper
Published 17 Aug 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • various applications, such as energy conversion in solar cells [10][11], biosensing [12], photothermal therapy [13], and biomedical imaging [14]. Surface modification with an inorganic coating, such as silica, can lend biocompatibility to the nanoparticles [15][16][17][18]. A gold shell on magnetic
PDF
Album
Full Research Paper
Published 14 Aug 2017

Nanostructures for sensors, electronics, energy and environment III

  • Nunzio Motta

Beilstein J. Nanotechnol. 2017, 8, 1530–1531, doi:10.3762/bjnano.8.154

Graphical Abstract
  • Nunzio Motta School of Chemistry, Physics and Mechanical Engineering and Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane 4001, Australia 10.3762/bjnano.8.154 Keywords: biosensors; electronics; energy; environment; gas sensors; solar cells; This
  • ., silicene, phosphorene, transition metal dichalcogenides, MXenes), which now number more than 6,000. The topic of nanoparticles is the focus of this Thematic Series, the use of which spans from biosensing to gas detection and from removing pollutants from water to new generations of solar cells. The
  • interaction between light and plasma electrons generated by gold nanoparticles is critical for the development of biosensing platforms [2] and for sensors based on surface enhanced Raman scattering [3]. New methods for creating thin films are expected to provide enhanced efficiency in solar cells [4] at a
PDF
Editorial
Published 27 Jul 2017

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • solar cells (OSCs) [27][28]. We chose this to serve as example as it closely resembles the functional principles of systems found in spin chemistry. While OSCs have significant potential to become an inexpensive, large area and flexible photovoltaic technology at lower cost than conventional
  • ]. Also, exploiting the unique properties of electronic spin interactions, the development of novel routes to enhance both the power conversion efficiency and lifespan of solar cells should be possible. State-of-the-art OSCs consist of the combination of two organic semiconductors, (electron) donor and
PDF
Album
Review
Published 11 Jul 2017

Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene

  • Dario Rocca,
  • Ali Abboud,
  • Ganapathy Vaitheeswaran and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2017, 8, 1338–1344, doi:10.3762/bjnano.8.135

Graphical Abstract
  • materials to solar cells [40] and photodetection devices [14]. For several technological applications in optoelectronics the discovery of new two-dimensional materials characterized by a direct bandgap is also important. While strictly speaking, only the CSe monolayer has a direct gap, most of the other
PDF
Album
Full Research Paper
Published 29 Jun 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • China 10.3762/bjnano.8.131 Abstract Titanium dioxide (TiO2) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder
  • et al. reported the fabrication of hierarchical TiO2 nanorods via ME-ES and the application as photoanode material for dye-sensitized solar cells [25]. According to Shi et al., highly porous SnO2/TiO2 composite nanofibers were prepared successfully by ME-ES and subsequent calcination [28]. There are
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

Oxidative chemical vapor deposition of polyaniline thin films

  • Yuriy Y. Smolin,
  • Masoud Soroush and
  • Kenneth K. S. Lau

Beilstein J. Nanotechnol. 2017, 8, 1266–1276, doi:10.3762/bjnano.8.128

Graphical Abstract
  • in recent years for their use in solar cells [1][2][3][4][5][6], batteries [7], supercapacitors [8][9][10][11][12], sensors [13], biosensors [14], and microelectronics [15][16]. As devices continue to decrease in size, the integration of conducting polymers within nanomaterials using conventional
  • demonstrated PEDOT as a neutral hole-transporting polymer for enhancing solar cells efficiency and lifetime [28]. oCVD PEDOT was also used to encapsulate flexible organic photovoltaics [29] and in the fabrication of organic photovoltaic circuits on unmodified paper [30]. Likewise, our group demonstrated the
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • , biolabels and for the sensibilization of Si-solar cells. But the optical properties of CdSe QDs are limited by the band-gap energy of the bulk material (Eg = 1.74 eV) [10][11], which makes exciton IR-PL impossible. Therefore, the development of new synthetic methods for CdSe QDs with non-excitonic IR-PL is
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • sensors [30][31][32] or photoelectrodes for dye-sensitive solar cells [33]. This technique has also be extended for the synthesis of one-dimensional metal oxide nanomaterials [34][35][36][37]. Herein, we introduce a process which allows highly porous carbon tubes as well as nanocrystalline silicon carbide
PDF
Album
Full Research Paper
Published 24 May 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • develop materials for various photonic applications such as photoelectrodes, solar cells or photocatalysts. Despite the photosensitizing properties of ZCIS QDs and their increased stability compared to CIS cores, ZCIS QDs have yet to be combined with ZnO to develop photocatalysts. Moreover, ZnO/CIS
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Energy-level alignment at interfaces between manganese phthalocyanine and C60

  • Daniel Waas,
  • Florian Rückerl,
  • Martin Knupfer and
  • Bernd Büchner

Beilstein J. Nanotechnol. 2017, 8, 927–932, doi:10.3762/bjnano.8.94

Graphical Abstract
  • the interfaces, which is disadvantageous for applications in organic solar cells. Experimental We have carried out valence-band and core-level photoelectron spectroscopy studies of MnPc/C60 interfaces at room temperature. The preparation and the analysis chamber had a base pressure of about 3·10−10
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition

  • Alper Balkan,
  • Efe Armagan and
  • Gozde Ozaydin Ince

Beilstein J. Nanotechnol. 2017, 8, 872–882, doi:10.3762/bjnano.8.89

Graphical Abstract
  • [18], sensors [23], solar cells [24] and membranes [25] because of its great thermal and environmental stability, ease of synthesis, excellent conductivity, cost-effectiveness and redox-tunability [26][27][28][29]. One of the original aspects of PANI is that its electrical conductivity can be tuned
PDF
Album
Full Research Paper
Published 18 Apr 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • of IL-based materials is the general area of advanced energy technology, such as proton-exchange membrane (PEM) or alkaline fuel cells, solar cells, or various battery types [1][5][6][7]. ILs offer, unlike conventional solvents and substances, easy access to virtually unlimited structural diversity
PDF
Album
Full Research Paper
Published 29 Mar 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • electron–hole pairs. Additionally, the NPs result in a large volume expansion during the Li insertion–extraction process in LIB applications which hamper their use in applications such as energy storage, sensing, advanced catalysis, solar cells, diodes and also in biometrics. Thus, strongly coupled
  • , multicomponent NPs have been also integrated with graphene, but such examples are still very few to date [29]. In a photovoltaic cell, sunlight energy is directly converted to electricity. Graphene and graphene–NP hybrids have been investigated extensively in the field of solar cells because of their unique
  • molecular grafting process was employed in situ to incorporate GSs in TiO2 nanoparticle films for application in dye-sensitised solar cells. The conductivity of the film increases with the incorporation of the GSs, which in turn results in an enhancement of the power conversion efficiency [95]. A unique
PDF
Album
Review
Published 24 Mar 2017
Other Beilstein-Institut Open Science Activities