Search results

Search for "thin-film" in Full Text gives 514 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • expanding their deleterious effect on human health and the environment. The proposed technique uses a blend of thin-film and microcantilever (micro-electromechanical systems) technology, which mitigate the disadvantages of the nanoparticle approaches, for the selective detection of Cd(II) with a LOD below
  • cantilever sensors. Moreover, the proposed piezoresistive device has capabilities to directly capture the surface stress make this a better option for HMI applications. Microfluidic Platform with Piezosensor In the proposed method, the benefits of three different technologies are combined, namely thin film
PDF
Album
Full Research Paper
Published 18 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • this sample as highly ordered DBP layer. The DBP layer that was deposited at a substrate temperature of 25 °C, on the other hand, is labeled as less ordered DBP layer. An increase of the crystal quality of the DBP thin film grown at a substrate temperature higher than 90 °C was also reported by Zhou et
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • antenna. This nanoantenna is typically made by chemical etching of a thin Ag or Au wire or by evaporating a Ag or Au thin film on AFM tips. The tip works like an optical antenna when it is brought as close as a few nanometers to the sample surface and when it is illuminated with a tightly focused laser
  • light blue and orange lines show the raw spectra, which are composed of a broad photoluminescence continuum emitted from the underlying Au thin film and sharp Raman peaks. For further analysis, these spectral features are fitted using Lorentzian functions for the Raman peaks and a Gaussian function for
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • costs [3][4][5][6][7][8][9][10]. It has been shown that Sb2Se3 has many applications in photovoltaic devices and thermoelectric systems where it can be used as a thin film [11], in thermovoltaic and switch devices [12], in optical data storage [13] and in optoelectronics as a 2D anisotropic material [14
PDF
Album
Full Research Paper
Published 16 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • films; Introduction Tellurium (Te) is a multifunctional chemical element used for the development of many devices, such as diodes with high (106) rectification ratios, thin-film field-effect transistors, optical recording media, infrared and UV detectors, strain-sensitive devices and others (see [1][2
PDF
Album
Full Research Paper
Published 10 Jul 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • Stefanie Schlicht Korcan Percin Stefanie Kriescher Andre Hofer Claudia Weidlich Matthias Wessling Julien Bachmann Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair ’Chemistry of Thin Film Materials’, IZNF, Cauerstr. 3, 91058 Erlangen, Germany DWI-Leibniz Institute for Interactive Materials
  • attractive thin film technique that allows for a conformal coating of not only planar substrates but also of highly porous ones [12][19][20][25]. This method is based on well-defined self-limiting surface reactions combined to deposit thin layers with highly uniform thickness. At least two precursors
PDF
Album
Full Research Paper
Published 22 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • the alloy. Moreover, the luminescence is excited by the photon energy (3.81 eV) much lower than the bandgap for the thin film with the x value of 0.40 (4.28 eV). The same is true for the luminescence measured at low temperature (Table 2). The bandgap of the alloy at low temperature was recalculated
PDF
Album
Full Research Paper
Published 12 Jun 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • height variation. (a) AFM topography,1 µm × 1 µm scan area. (b) Corresponding current map of 10 nm PbPc thin film on SLG/SiO2/Si substrate obtained at 2 V sample bias. (c) Profile section of (b) along the marked line showing the current variation across the film. (d) I–V curve acquired from a conducting
PDF
Album
Full Research Paper
Published 19 May 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • Abstract Single-layer vanadium nitride (VN) and bilayer Pd0.96Fe0.04/VN and VN/Pd0.92Fe0.08 thin-film heterostructures for possible spintronics applications were synthesized on (001)-oriented single-crystalline magnesium oxide (MgO) substrates utilizing a four-chamber ultrahigh vacuum deposition and
  • VN thin film has grown cube-on-cube epitaxially (for an individual Pd1−xFex film see the full crystallinity analysis in [33]). Figure 1c,d shows that the Pd0.96Fe0.04/VN and VN/Pd0.92Fe0.08 heterostructures are pass-through epitaxial. This is, first of all, due to the good lattice match between MgO
  • Cu Kα (λ = 1.5418 Å) radiation in the Bragg–Brentano geometry with a scanning rate of 0.002°/s in the 2θ range from 17° to 82° and a step width of 0.0153°. Room-temperature XRD patterns of the pristine MgO(001) substrate, the VN thin film on MgO, Pd0.96Fe0.04 on MgO and the Pd0.96Fe0.04/VN
PDF
Album
Full Research Paper
Published 15 May 2020

A set of empirical equations describing the observed colours of metal–anodic aluminium oxide–Al nanostructures

  • Cristina V. Manzano,
  • Jakob J. Schwiedrzik,
  • Gerhard Bürki,
  • Laszlo Pethö,
  • Johann Michler and
  • Laetitia Philippe

Beilstein J. Nanotechnol. 2020, 11, 798–806, doi:10.3762/bjnano.11.64

Graphical Abstract
  • and thickness) and the porosity of the films was changed by applying different chemical etching times (from 2 to 8 min) using a 5 wt % H3PO4 solution at 35 °C. In order to obtain different colours of the nanostructures, an 8 nm thin film of chromium was deposited on top of the AAO films using an
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • measurements) were used as substrates. Decon90 glass cleaner was used for glass substrate cleansing. Thin film preparation A SNTEK Korea magnetron sputtering system with a dual radio frequency (RF)/direct current (DC) sputtering source with a main deposition chamber 15.7 inches in height and 23.6 inches in
  • . K. Isiyaku as suggested by A. H. Ali and N. Nayan. Thin film deposition and characterization were performed by A. K. Isiyaku. Data analyses and interpretation including manuscript writing were carried out by A. K. Isiyaku, A. H. Ali and N. Nayan. Funding The support from Universiti Tun Hussein Onn
PDF
Album
Full Research Paper
Published 27 Apr 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • Telecommunications, Xi’an 710121, China 10.3762/bjnano.11.53 Abstract Among the patterning technologies for organic thin-film transistors (OTFTs), the fabrication of OTFT electrodes using polymer templates has attracted much attention. However, deviations in the electrode alignment occur because the coefficient of
  • achieved the alignment of OTFT electrodes using the composite template. Keywords: coefficient of thermal expansion; dry blending; organic thin-film transistors (OTFTs); OTFT electrodes; PDMS/SiO2 composite template; Introduction Organic thin-film transistors (OTFTs) provide a platform to construct next
PDF
Album
Full Research Paper
Published 20 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • they attributed to a reduced electrochemical activity [42]. Yang et al. report similar findings; they used ESM to study thin film Li1.2Co0.13Ni0.13Mn0.54O2 cathodes and observed decreasing ESM amplitude after a few ESM scans. They attributed this, similar to Zhu et al., to the reduction of the
  • electrochemical activity, electrochemical fatigue and degradation of the material [43]. Jesse et al. conducted ESM on thin film silicon anodes and aged them by high frequency cycling [33]. Contrary to Yang et al. and Zhu et al., they found an increase of the ESM amplitude over cycling time, which they linked to
  • (positive pulse) of the Li-ions. The distributions do not show any significant change from the fresh to the aged cathode, indicating an unaffected diffusivity in the material providing the signal. Using to describe the diffusion in a thin film [40] with a time constant τ = 2 ms and a depth of the probed
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • annealing. In Figure 3a–g selected SEM images of nanostructures formed after annealing of Ag films with a thickness from 2 to 7 nm are presented. The films were annealed at 250 °C for 15 min. In the image corresponding to the 1 nm thin film (Figure 3a) only some voids are present. There are no islands
PDF
Album
Full Research Paper
Published 25 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • followed by ultrahigh vacuum deposition of materials was used for the fabrication of the nanostructures. Hybrid QPSJ samples were made of Ti, Al and aluminum oxide [12]. The high-impedance JJs studied in this paper, similar to those from [12], were fabricated from superconducting thin film Al oxidized in
  • test sample fabricated from superconducting thin film aluminum oxidized in situ to form tunnel barriers. Left panel: overview of the structure. Right panel: details of the JJ element. (a) Experimental I–V characteristics of 50 pairs of Al–AlOx junctions connected in series. Inset shows a schematic of
PDF
Album
Full Research Paper
Published 03 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • transition metals, as well as Ag and Au. However, most studies have examined single-atom adsorption or adsorbed nanoparticles of noble metals. This means there is a knowledge gap in terms of thin film nucleation on 2D materials. To begin addressing this issue, we present in this paper a first-principles
  • character of Cu nanoclusters is preserved. Keywords: copper (Cu); density functional theory (DFT); 2D materials; molybdenum disulfide (MoS2); thin film nucleation; Introduction Since the successful exfoliation of monolayers of graphene by Novoselov et al., 2D materials have gained a large interest in a
  • enable the use of 2D materials in technology applications, processes have been developed to grow 2D materials via chemical vapour deposition (CVD) [16][17] and atomic layer deposition (ALD) [18][19]. The films prepared via thin film deposition were comparable in performance to materials obtained via
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • . Characterization of the polyplex Electron microscopy: A small drop of the polyplex sample was placed on a conducting carbon tape and air-dried. The sample was then sputter-coated with a thin film of gold. The sample was placed in the sample chamber and imaged at an accelerating voltage of 3 kV using a cold field
PDF
Album
Full Research Paper
Published 17 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • ); organic photovoltaics; photocarrier dynamics; pump–probe configuration; time-resolved measurements; Introduction Many emerging photovoltaic technologies rely on the use of thin film materials displaying structural and/or chemical heterogeneities at the μm or nm scale. This is the case for solution
  • same features as the raw data however at a slightly lower noise level. Organic BHJ thin films processing, solar cell fabrication and characterization The PTB7:PC71BM BHJ thin film was deposited on an indium thin oxide (ITO) substrate coated with PEDOT:PSS (a hole-conducting polymer) following the
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • vector and provided efficient sensing of changes in the intracellular acidic pH value. In recent years, DNA thin film-based biosensors received significant interest for the detection of biologically relevant analytes, such has forensic samples [61][62]. The design of active electrochemical DNA sensors
PDF
Album
Review
Published 09 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • microscope (STM) to the AgI-coated thin film structure schematically illustrated in the lower inset of Figure 1a. The photosensitive AgI layers were formed promptly before electrical characterization by exposing a 100 nm thick Ag layer to iodine vapor at 40°C and ambient pressure for 30 s in the dark
  • following the method of Kumar and co-workers [36]. The Ag films were evaporated on standard Si/SiO2 wafers using a 12 nm thick Ti sticking layer. The structural characterization of the thin film samples was carried out by Rutherford backscattering spectrometry (RBS) using an ion beam of 3500 keV 4He
  • structure (top to bottom) of 200 nm AgI, 22.5 nm Ag3I and 43 nm Ag after iodine exposure on the Ti/SiO2/Si substrate. Nanometer-scale Ag/AgI/PtIr nanojunctions were created by bringing the PtIr tip into direct contact with the thin-film surface while a constant bias voltage of 100 mV was applied on the
PDF
Album
Full Research Paper
Published 08 Jan 2020

Influence of the epitaxial composition on N-face GaN KOH etch kinetics determined by ICP-OES

  • Markus Tautz,
  • Maren T. Kuchenbrod,
  • Joachim Hertkorn,
  • Robert Weinberger,
  • Martin Welzel,
  • Arno Pfitzner and
  • David Díaz Díaz

Beilstein J. Nanotechnol. 2020, 11, 41–50, doi:10.3762/bjnano.11.4

Graphical Abstract
  • diffraction (XRD). Thin-film processing including laser lift off (LLO) was applied. The influence of epitaxial changes on the N-face etch kinetics was determined in aqueous KOH solution at elevated temperature. Inductively-coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the etch
  • epitaxy stack. Thin-film technology is a common approach in industry to improve device performance. Thereby, a substrate with higher thermal conductivity, e.g., silicon or nickel, is bonded to the top p-contact of the LED structure [8]. The sapphire substrate is removed by laser lift off (LLO). This
PDF
Album
Full Research Paper
Published 03 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • resolution of 5 cm−1 (50 µm slit-like pinhole) with an exposure time of 5 s (10 accumulations). Electrode preparation and electrochemical measurements The catalyst thin-film electrode (catalyst loading of 0.285 mg·cm−2 for Pt-free catalyst, 140 μg·cm−2 loading (Pt loading: 28 μg·cm−2) for the 20 wt % Pt/C E
  • creating additional diffusion limitations [51]. The geometric area of the electrochemically accessible part of the electrode is 0.28 cm2. For the electrochemical experiments, we used a rotating ring disk electrode (RRDE) setup (Pine Instruments Analytical Rotator, AFASRE), with the thin-film electrode on
PDF
Album
Full Research Paper
Published 02 Jan 2020

Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells

  • Mohammad J. Akbar,
  • Pâmela C. Lukasewicz Ferreira,
  • Melania Giorgetti,
  • Leanne Stokes and
  • Christopher J. Morris

Beilstein J. Nanotechnol. 2019, 10, 2553–2562, doi:10.3762/bjnano.10.246

Graphical Abstract
  • formulations were prepared using the thin-film technique to yield small and monodisperse vesicles as judged by dynamic light scattering (DLS) analysis (Table 1). The colloidal properties of both liposomal formulations were highly similar in terms of size, polydispersity and zeta potential and consistent with
  • the molar extinction coefficient for the peptide tryptophan residue (5560 AU/mmol/mL). A thin film was produced by slow evaporation of the solvent under vacuum followed by one hour under high vacuum to remove solvent traces. The film was hydrated with PBS to a final lipid concentration of 10 mg/mL
PDF
Album
Full Research Paper
Published 19 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • Road, Berkeley, California, 94720, USA 10.3762/bjnano.10.230 Abstract The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical
  • building electricity demand can be produced on site [1]. Solar windows can be split into two groups: perforated grids of opaque solar cells, such as silicon, or one continuous semitransparent thin film solar cell (dye-sensitized, perovskite, quantum dot, etc.) [1]. Perforated solar windows, comprised of
  • fragments of crystalline Si (c-Si) solar cells, have shown a tendency to overheat and underperform in efficiency (PCE) [2][3]. C-Si grids are also considered visually unappealing for solar windows [4]. Accordingly, thin film solar cells, even with lower PCE, are considered more promising for applications in
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • (LSNT). Pyramidal tips are made based on an indirect tip fabrication process [28] by etching a mould into a 380 µm thick single-side polished silicon (100) wafer. Figure 1a shows the summarized process flow, outlining the important steps. (i) A 20 nm LSNT thin film is layered onto a silicon (100) wafer
PDF
Album
Full Research Paper
Published 29 Nov 2019
Other Beilstein-Institut Open Science Activities