Search results

Search for "transport" in Full Text gives 761 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • dissipation power, Pgen, of the generator mesa. For the whisker-based device (c) a profound emission occurs at the step in the I–V marked in panel (a). For the crystal-based device (d) only a small monotonic increment of Rdet vs Pgen is observed, caused by gradual self-heating. Heat transport in a whisker
  • -based device without electrodes. (a) A sketch of the device and (b) a cross section through the mesa (not to scale). (c–e) Calculated temperature distribution for the device in vacuum. (f–h) The same for the device in exchange He gas. Heat transport in a whisker-based device with an electrode. (a) A
  • sketch of the device and (b) a cross section through the mesa (not to scale). (c–e) Calculated temperature distribution for the device in vacuum. (f–h) The same for the device in exchange He gas. Heat transport in a crystal-based device in vacuum (a) without electrodes, (b) with electrodes. The left
PDF
Album
Full Research Paper
Published 21 Dec 2021

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • indicator for local changes of the defect chemistry, as it is directly related to the local Fermi level [20]. The defect chemistry of acceptor-doped ceria and the oxide ion/electronic transport within ceria single-phase materials and also for ceria-based dual-phase materials is well understood at
  • expected to be in the spinel region rather than on another site of the ceria phase. Another possible explanation would be that enhanced charge transport by electrons occurs along the grain boundary. This has already been confirmed experimentally for similar composite materials [33]. In this case, an
  • the sign of the polarization, it was observed in some cases that charge is obviously distributed along scratches on the surface, which were introduced by polishing. This underlines the hypothesis, that fast charge transport in ceria-based materials via the uppermost surface layers is still possible at
PDF
Album
Full Research Paper
Published 15 Dec 2021

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • diagram [2] and Gibb’s energies [3], were determined. In other works, the crystallographic phases Cr3Ge, Cr5Ge3, Cr11Ge8, CrGe, and Cr11Ge19 were synthetized using chemical vapor transport [4]. Also, Cr11Ge19 in the form of large single crystals was obtained using a two-zone vertical gradient freeze
  • /filled nanoscale cables suitable for medicinal magnetic transport. Experimental CrGex deposits were synthetized using CVD. In a custom-made twin furnace (Supporting Information File 1, Figure S12), chromium(III) acetylacetonate powder (Sigma-Aldrich, 99.99%) was heated to 110 °C and evaporated in the
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • analysis of the transport properties, the best structure was selected and located at the center of a Si lens for efficient detection. The sample was mounted into a dry cryostat allowing for measurements in a wide temperature range from helium temperatures to ≈80 K. An external gigahertz signal was fed
  • through an optical window with IR filters using a semiconductor synthesizer with a multiplier (70–78 GHz) or using a backward wave oscillator (230–370 GHz). The JJ transport properties and the response were characterized by a precise Keithley low-noise current source and nanovoltmeter using a standard 4
PDF
Album
Full Research Paper
Published 23 Nov 2021

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • predominantly crystalline PVdF phase and an amorphous HFP phase, which provides necessary mechanical strength and good ion transport matrix. Magnesium-based electrochemical devices are emerging as an alternative to lithium-based devices [26][27][28][29][30]. Magnesium can be an alternative due to its
  • polymer gel electrolytes (log σ as a function of 1000/T). From the plot, it can be seen that the thermal dependence of the conductivity follows the Vogel–Tammann–Fulcher (VTF) equation, which is commonly used to explain the ion transport in amorphous polymer electrolytes [36][37]: where A is a constant
  • that shows the conductivity at an infinitely high temperature, the parameter B is the pseudo-activation energy and it is related to the critical free volume for ion transport, and T0 is a reference temperature, also called equilibrium glass transition temperature, which has a value close to the Tg
PDF
Album
Full Research Paper
Published 18 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • applied to solve problems associated with macroscopic flows [2][3][4][5]. However, in the field of fluid transport at the micro-/nanoscale, the problem is not that simple and a possible deviation from the classical hypothesis may take place, resulting in liquid slippage at solid surfaces [6][7][8][9]. In
  • and fabrication of nanofluidic devices. In addition, understanding the slip flow behavior in nanoporous media is also of great significance in the field of development of shale reservoirs [22]. The shale oil transport could be enhanced due to the positive slip length compared with that of the no-slip
  • transport model [16]. Moreover, increasing the slip length can also raise the energy conversion efficiency from mechanical to electrical energy of the nanofluidic devices due to the reduction of flow resistance. For instance, it was shown that a slip length of 50 nm could increase the efficiency of energy
PDF
Album
Review
Published 17 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • ; polarons; quantum dots; Introduction As the dimension of a mesoscopic system decreases, interactions between electrons become more important and many-body resonances build up. As a consequence, new transport paths are opened. The key phenomenon of strong correlations is the Kondo effect, which arises from
  • already a well-established branch of research. The attached objects act as scatterers for electron transmission through the quantum wire and allow one to tune its transport properties. In T-shaped systems, the interference of different conduction paths can lead to Fano antiresonance manifesting as a dip
  • ultrafast sensors, actuators, and signal processing components. Of special interest are molecular systems because molecules due to their softness easily deform during tunneling processes, giving rise to excitation of local phonon modes. The polaronic transport through molecular systems has been recently
PDF
Album
Full Research Paper
Published 12 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • gradient or a thermal gradient. The diffusivity and dynamic viscosity affect the way in which mass is transported on the substrate. These gradients cause a circulatory flow of fluid, influence the mass transport, and eventually result in differently patterned fractal structures. The effects are
  • resulting in more interaction sites at which analyte and sensor can interact. The authors termed the mechanism “random tunneling junction network”. Here, electron transport across the fractal structures is assumed to occur via tunneling. Different fractal dimensions lead to different Schottky barrier
  • provided a large surface area while the branching of the structures helped in diffusion and transport of gas molecules within the sensing material. The samples had fractal dimensions of 1.59 (after two hours of reaction) and 1.38 (after six hours of reaction). Zang et al. demonstrated the mass production
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • the FEBID process. The follow-up study [15] introduced a novel multiscale computational methodology that couples Monte Carlo simulations for radiation transport with IDMD for simulating the IDC processes with atomistic resolution. The spatial and energy distributions of secondary and backscattered
  • induces the release of metal-free ligands and the growth of metal-enriched deposits. It involves a complex interplay of phenomena taking place on different temporal and spatial scales: (i) deposition, diffusion, and desorption of precursor molecules on the substrate; (ii) transport of the primary
  • distributions can be obtained by means of Monte Carlo (MC) simulations of electron transport [37]. There are several codes suitable for this purpose with different possibilities and limitations, for example, SEED [38], Geant4 [39], and PENELOPE [40]. The yield of SE generated in various materials can also be
PDF
Album
Full Research Paper
Published 13 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • the power factor (PF = S2σ) which is connected with the electrical transport [8][9] and the lowest value of κtot [10]. To date, a considerable amount of research has been performed to enhance the ZT value. For instance, by lowering the value of the lattice thermal conductivity (through all-scale
  • -type Bi-doped SnSe single crystal also gives a high ZT value of 2.2 (along the b axis) at 773 K [37]. Motivated by these prominent TE performances, which were due to ultra-low thermal conductivity along with modest electrical transport properties, SnSe-based TE alloys have drawn considerable attention
  • Gibbs2 code [54] by considering lattice vibrations. To calculate the thermoelectric properties, we used the Boltzmann transport theory employed in the BoltzTrap2 [55] code by utilizing the rigid band estimation under a constant relaxation time. Results and Discussion Structural properties We have
PDF
Album
Full Research Paper
Published 05 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • as the emissive layer (EML), the hole transport layers (HTL), the electron transport layers (ETL), the cathode, and the anode [17][18][19][20][21]. Enhancement in LED properties via surface plasmon resonance (SPR) of metal nanoparticles (MNP) such as Au and Ag have also been reported [22][23]. This
  • determined. Enhancing hole mobility: hole injection and transport layers The optimization of charge carrier injection also consists of reducing the driving voltage of the LED. For achieving this, holes should be readily injected from the high-work-function anode surface (e.g., ITO, SWNT), while the electrons
  • HTL in OLED with the configuration ITO/PEDOT:PSS/SWNT–PVK nanocomposite/DCM-doped Alq3/Li:Al [47]. An efficient electron transport was also obtained from the Li:Al cathode (with work function of 2.9 eV) to the Alq3 layer due to its higher LUMO level (3.2 eV) in comparison to the Li:Al work function
PDF
Album
Review
Published 24 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • has been previously reported when using glutathione-responsive self-delivery nanocapsules (100 nm), a strategy that increases cellular uptake efficiency, intracellular CUR delivery, and transport to the nucleus, which results in growth inhibition of HeLa (human cervical carcinoma) cells [75]. Similar
  • , invasion, and tube formation [39]. It was observed that at pH 5.8, more than 90% of CUR and doxorubicin were released, and this amount is significantly higher than that observed at pH 7.4 (59.37% and 66.63%, respectively). This represents an advantage in the systems used to transport drugs to carcinogenic
PDF
Album
Review
Published 15 Sep 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • SRIM simulation suggested that each copper atom is displaced around 22 times during the polishing process. A high enough Cu atom as well as Ga ion mobility is likely to move ions as well as displaced Cu atoms into grain boundaries. Grain boundaries can facilitate transport deeper into the material and
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • these ultrathin interfacial layers significantly reduce both the molecular adsorption energy and the hybridization of molecular states with the electronic bands in metals and semiconductors. However, charge transport is not completely inhibited, and electrons can still tunnel from the metal through
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • oxide nanoparticles [28]. Numerous indispensable parameters including surface tension, polarity, viscosity, and hydrogen bonding have an important influence on the reactivity of species. Also, the formation of nanostructures is governed by the mass transport properties of the DES components. It is also
  • ethylene glycol in a molar ratio of 1:2 for electrodeposition of a zinc–nickel alloy to provide corrosion protection [90]. Due to the ever-rising interest in DESs for nanomaterial synthesis, a fundamental understanding regarding interfacial behavior and mass transport, such as ionic adsorption, surface
PDF
Album
Review
Published 18 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis. We
  • computing; devices exploiting spin polarized transport or integrated magnetic field; spin-valve; superconducting multilayers; superconducting spintronics; Introduction Competition between spin-polarized ferromagnetism and spin-singlet superconductivity leads to a variety of interesting phenomena including
  • memory elements and spin valves [22][29][34][39][40][41][42][43]. The need for establishing experimental characterization techniques for the in situ monitoring of magnetic states in S/F micro- and nanoscale devices is our main motivation. Here we study experimentally in-plane transport properties of
PDF
Album
Full Research Paper
Published 17 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • nanoparticles and photoresist are uniformly mixed and a U-shaped pattern is processed by photolithography. The robot could capture and automatically transport microbeads injected with chemicals to specific locations in neurons under the control of a gradient magnetic field, which has potential applications in
  • the glass slide. The use of robots to measure the force between cells may become a means of detecting cancer in its early stage. This research brings new hope for cancer treatment. Kim et al. [23] designed a micro/nanorobot magnetically actuated in three dimensions, which can accurately transport
  • fields, which can accurately control the transport of cargo. The DC electric field changes the transmission speed through electrophoresis and electroosmosis effects, and the AC electric field independently and accurately guides the nanomotor through electric torque on the dipole. The effective
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • magnetic fields, the interaction between paramagnetic nanoparticles might lead to the formation of chain structures [36]. Although external magnetic fields can be used to effectively gather and transport paramagnetic nanoparticles, they tend to form aggregations. Therefore, assembly and disassembly
  • the microrobot will impart magnetizability. Magnetic field-based transport enables the accelerated delivery of a biomaterial to a target site by overcoming Brownian diffusion [44]. Since cobalt and nickel are quite toxic and iron oxide nanoparticles are considered to be biofriendly [45], embedding
  • cargo. Magnetic field gradients are applied to control the movement direction. To transport goods in an environment with an integrated system of electric and magnetic fields was difficult for previous soft robots to achieve. This is a significant improvement. The most common propulsion method for MNRs
PDF
Album
Review
Published 19 Jul 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • mass transfer; ∇ ≡ ∂/∂r. For simplicity, we assume, that there are no cross-effects in mass transfer, and that Fick’s or Fourier’s laws adequately describe mass transport. The last term in Equation 1 represents a stochastic source, which in the simplest case is chosen as white zero-mean delta
PDF
Album
Letter
Published 13 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • are created by several pathways, including partial AgNPs dissolution in the gastric fluid, uptake and systemic transport of ionic and nanoparticulate Ag as thiol and selenium complexes, and final deposition in the near-skin regions [15]. Especially important is the process of interaction with thiols
  • the majority of Ag will be cleared from the body through faeces [35], released Ag+ and its soluble complexes will be absorbed through passive or active transport [26]. It was also proposed that the AgNPs pass through the intestinal barrier [36][37]. Absorbed Ag will then interact with tissues and
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • defect density was the same. The authors described a hopping carrier transport model to explain the effect and pointed out that the observed behavior essentially places a limit on the spatial resolution attainable when using the helium ion beam to selectively dose and thus change the conductivity of
  • et al. also observed semiconductor–insulator–metal transitions for increasing dose, noting preferential sputtering of selenium [29]. Here it was found that for a given dose, hole transport was degraded more than electron transport. The authors went on to demonstrate a lateral p–n-like homojunction by
  • the high sensitivity of the electronic transport properties of YBCO to point defects introduced into the lattice [43]. The same study also confirmed that minimal lateral scatter of the ions in the YBCO thin film occurs; even at the higher doses used to induce amorphisity, the irradiated channels
PDF
Album
Review
Published 02 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • units, among which the pyrene–pyrimidine-based P32 (Figure 4) with the lowest nitrogen content showed the highest HER. Nitrogen heterocycles within polymers could optimize wettability, bandgap, charge transport, and separation. Motivated by the planar configuration and strong electron-acceptor
  • side chains. Different from long alkyl chains, the polymers incorporating the oligo(ethylene glycol) side chains (P48) (Figure 5) showed considerably improved charge separation and transport and could be dispersed in water without any co-solvent. Similar to the N atoms in BT units, oxygen atoms can
  • -assembling pristine polymers (P52 and P53) and hydrophilic PEG45-b-PMMA103 (Figure 5). The hyperbranched Pdots yielded higher HERs (as high as 16.8 μmol·h−1 (20 mg) for P53) than the linear Pdot P52, due to the shortened charge transport pathway, 3D transport, and more negative reduction potentials of the
PDF
Album
Review
Published 30 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • pairs, (iv) improved photogenerated charge transport and separation, and (v) higher reducing ability of the photogenerated electrons. The above factors affected the 4.4-fold enhancement of the photocatalytic efficiency in hydrogen evolution in comparison to the pristine catalyst. Keywords: chlorine
  • . It further indicates that Cl doping can promote transfer and separation of the photogenerated carriers [55], which agrees with the photoluminescence spectroscopy results and transient photocurrent response. The improved transport and separation can be affected by Cl atoms acting as a charge carrier
  • transport bridge between the layers of carbon nitride [45][55]. The presented study revealed that the polycondensation of melamine with 2-chloro-4,6-diamino-1,3,5-triazine leads to formation of Cl-doped polymeric carbon nitride. The presented material showed improved photocatalytic properties in the
PDF
Album
Full Research Paper
Published 19 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • ceruloplasmin (CP), both involved in metal homeostasis. They concluded that protein diversity stabilizes and controls the dissolution and transport of AgNPs. Understanding the interaction between AgNPs and corona proteins is essential to establish new in vivo studies with AgNPs [122]. The human immune system
PDF
Album
Supp Info
Review
Published 14 May 2021
Other Beilstein-Institut Open Science Activities