Search results

Search for "tunneling" in Full Text gives 305 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Graphical Abstract
  • studied with scanning tunneling microscopy (STM) to evaluate the surface conformation and molecular geometry [14]. Individual molecules of nonplanar freebase and copper-metallated tetraphenyl porphyrins adsorbed on Cu(111) were investigated using frequency modulated noncontact AFM to resolve subtle
  • with a surface orientation defined by the substituents [20]. The self-assembly of manganese meso-tetra(4-pyridyl)porphyrin on Cu(111) was studied using low temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to resolve molecular structures by Chen et al. [21]. A
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Circular dichroism of chiral Majorana states

  • Javier Osca and
  • Llorenç Serra

Beilstein J. Nanotechnol. 2018, 9, 1194–1199, doi:10.3762/bjnano.9.110

Graphical Abstract
  • microwave photoassisted tunneling in Majorana nanocircuits have been suggested in [27]. For chiral Majorana states in a 2D square or rectangular geometry the CD at low energies is characterized by a sequence of equally spaced peaks, corresponding to transitions of Bogoliubov–deGennes quasiparticles from
PDF
Album
Full Research Paper
Published 16 Apr 2018

Inverse proximity effect in semiconductor Majorana nanowires

  • Alexander A. Kopasov,
  • Ivan M. Khaymovich and
  • Alexander S. Mel'nikov

Beilstein J. Nanotechnol. 2018, 9, 1184–1193, doi:10.3762/bjnano.9.109

Graphical Abstract
  • the reverse process. These rates are determined both by the probability of electron tunneling through the barrier at the superconductor/semiconductor (S/SM) interface and the corresponding densities of states. In particular, it is important that the rate γw is proportional to the DOS in the SM
  • the electrons in the subsystems, Δs(r) is the superconducting order parameter, α is the spin–orbit coupling constant, h = gβH/2 is the Zeeman energy, and H is the applied magnetic field. We consider the incoherent tunneling model, which does not conserve the momentum, e.g., due to the presence of the
  • disorder at the interface. Thus, the ensemble average of the tunneling amplitudes has the form: where is the length of the order of the atomic scale. The tunneling is also assumed to be independent of energy and spin and occurs locally in time and in space, i.e., from a point r on the superconducting
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • transmission electron microscopy [5][8][9][10][11][12][13]. As atomic resolution methods, scanning probe microscopy including scanning tunneling microscopy (STM) [13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30] and non-contact atomic force microscopy (NC-AFM) [19][23][29][31][32][33][34
PDF
Album
Full Research Paper
Published 21 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Revealing the interference effect of Majorana fermions in a topological Josephson junction

  • Jie Liu,
  • Tiantian Yu and
  • Juntao Song

Beilstein J. Nanotechnol. 2018, 9, 520–529, doi:10.3762/bjnano.9.50

Graphical Abstract
  • DOS can be detected by using two STM leads or two normal leads. A single side lead can only detect the Andreev reflection tunneling process in the junction, which cannot reveal information about the interference effect in general. However, using two side leads, we can reveal information about the
  • experimentally is related to ferromagnetic atomic chains, which are put on a trivial superconductor [15]. It is believed that MFs can generate a zero-bias conductance peak (ZBP) in the conductance spectrum [16][17][18][19], and indeed the signature of ZBPs has been observed in both systems in tunneling
  • show that a single side lead can only detect the Andreev reflection tunneling process in the junction, which cannot reveal information about the interference effect in general. However, using the two side leads, we can display information about the interference effect of the MFs by combining Andreev
PDF
Album
Full Research Paper
Published 12 Feb 2018

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • Alberto Curcella Romain Bernard Yves Borensztein Silvia Pandolfi Geoffroy Prevot Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris, France 10.3762/bjnano.9.7 Abstract Scanning tunneling microscopy (STM), Auger electron spectroscopy (AES
  • spectroscopy; scanning tunneling microscopy; silicene; silicon; silver; Introduction Since their discovery in 2012 [1], silicene layers have been attracting a great interest, due to the expectation of electronic properties similar to the ones of graphene, based on theoretical studies [2]. Because of their
  • ], ARPES [31] and grazing incidence X-ray diffraction [32]. The diamond-like structure of the film has been confirmed by scanning tunneling microscopy (STM) [33] and optical measurements [34]. The Ag termination of the surface has been also demonstrated by Auger electron spectroscopy (AES) [34], metastable
PDF
Album
Full Research Paper
Published 05 Jan 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • ligands [52]. Typical conduction mechanisms within such films are tunneling or electron hopping [26][53]. An exponential dependence of the tunneling-dominated film conductivity on the number of saturated carbon–carbon bonds in the ligands has been reported [54][55]. The chemical nature of dithiols or
  • allowed the electron wave functions between neighboring nanoparticles to overlap and electron transport was described by thermally activated tunneling between the particles. Locating the Fermi level of the metal in the HOMO–LUMO gap of the ligand shell provides a pathway for electrons to pass along [56
  • created by the surrounding dielectric ligand shell of nanoparticles. Depending on the thickness of the barrier, electron transport has been described as quantum tunneling, electron hopping, ohmic conduction, or space-charge-limited conduction, to mention only a few [53][57][109][110]. Several reports
PDF
Album
Review
Published 07 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the
  • : inelastic electron tunneling spectroscopy; molecular junction; photochromic; single molecule; Introduction Molecular junctions hold promise for the realization of novel miniaturized electronic circuits [1][2][3][4][5][6] as well as for thermoelectric energy conversion devices [7][8][9][10]. Optoelectronic
  • C5F-ThM molecules [14]. The overall magnitude of the conductance of both the open and the closed form is rather small. This can be attributed to the presence of sp3 hybridized methylene groups, isolating the π-system and the thiol anchor groups. These act as efficient tunneling barriers for the
PDF
Album
Full Research Paper
Published 06 Dec 2017

Towards molecular spintronics

  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 2464–2466, doi:10.3762/bjnano.8.245

Graphical Abstract
  • molecules; (magneto-)optical spectroscopy; molecular spintronics; photoelectron spectroscopy; surface science; thin films; The discovery of tunneling and giant magnetoresistance in inorganic spin valves has led to a revolution in the field of magnetic memory and the significant increase in the storage
PDF
Editorial
Published 21 Nov 2017

Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition

  • Julie A. Spencer,
  • Michael Barclay,
  • Miranda J. Gallagher,
  • Robert Winkler,
  • Ilyas Unlu,
  • Yung-Chien Wu,
  • Harald Plank,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2017, 8, 2410–2424, doi:10.3762/bjnano.8.240

Graphical Abstract
  • indicate that exposure of the PtCl2 deposits to AH and the resulting purification can also lead to significant Pt atom mobility. We believe that the mobility of Pt atoms can be rationalized in the context of scanning tunneling microscopy observations made by Horch et al., who found that the diffusion of
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

  • Sumit Tewari,
  • Koen M. Bastiaans,
  • Milan P. Allan and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2017, 8, 2389–2395, doi:10.3762/bjnano.8.238

Graphical Abstract
  • Sumit Tewari Koen M. Bastiaans Milan P. Allan Jan M. van Ruitenbeek Huygens–Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands 10.3762/bjnano.8.238 Abstract Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at
  • to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes. Keywords: adatom imaging; mechanical annealing; scanning tunneling microscopy (STM); STM tip; tip apex; Introduction After the advent of the scanning tunneling microscope (STM) in 1981
  • [1][2], it became possible to image conducting surfaces with atomic resolution. STM operates by bringing the apex of a fine metallic wire into tunneling distance from a surface of interest. By providing feedback in the tunnel current and scanning the tip over the surface one can make topographic maps
PDF
Album
Full Research Paper
Published 13 Nov 2017

Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (Glycine max L.) leaves

  • Oliver Hagedorn,
  • Ingo Fleute-Schlachter,
  • Hans Georg Mainx,
  • Viktoria Zeisler-Diehl and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2017, 8, 2345–2356, doi:10.3762/bjnano.8.234

Graphical Abstract
  • crystal structure and scanning tunneling microscope (STM) analysis by Koch et al. [46] showed that polar groups of the primary alcohols are introverted and the nonpolar proportion is orientated to the outside of the platelet-shaped wax crystals. According to our results, it is concluded that surfactants
PDF
Album
Full Research Paper
Published 08 Nov 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • /bjnano.8.213 Abstract A chemical reaction (esterification) within a molecular monolayer at the liquid–solid interface without any catalyst was studied using ambient scanning tunneling microscopy. The monolayer consisted of a regular array of two species, an organic acid (trimesic acid) and an alcohol
  • supported. Keywords: on-surface reaction; scanning tunneling microscopy; trimesic acid; undecan-1-ol; Introduction On-surface reactions are a widespread class of chemical reactions taking place on a surface or at an interface involving active participation of two-dimensional molecular entities. This
  • participation is usually beyond the role of just being a solid support for the reactants. Using scanning tunneling microscopy (STM) it is possible to actively study the elementary processes of on-surface reactions. Different types of reactions such as Ullmann coupling, imine coupling, boronic anhydridation
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • is the fact that the TMR changes sign depending on the applied bias voltage, which demonstrates the effect of the molecular properties on the observed current and ultimately on the TMR effect. It was already validated experimentally in [30] that the tunneling through single CoPc molecules on
  • if the energies are reasonable, the magnitude of the tunneling currents through nanoscale devices are often strongly overestimated [32][33][34][35]. The origins of these problems are threefold: First, tunneling under a finite bias is a non-equilibrium situation that is not well described by standard
  • -correlation functionals for transport calculations [38] and by the high computational cost. Second, standard functionals for DFT do not describe strongly correlated systems particularly well. Third, NEGFs can describe tunneling (hybridization) exactly but naturally lead to perturbative approximations for
PDF
Album
Full Research Paper
Published 06 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • ]. In the case of PEDOT, the perimeter is taken to be 0.774 nm [70]. Using the multibarrier tunneling model in conjunction with the PFEO, we can now calculate the transmission probability for the electrons corresponding to the PFEO energy levels, for different numbers of barriers (N) and for different
  • is not uniform, presumably due to the existence of a variety of alternate electron paths, where tunneling is not always the dominant mechanism. Clearly, the brick and mortar structure is not perfect and the concentration and distribution of platelets varies throughout and across the film, as shown by
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • . We use first-principles methods of inelastic tunneling transport based on density functional theory and non-equilibrium Green’s functions to calculate the rates of emission and absorbtion of vibrations by tunneling electrons, the population of vibrational modes and the energy stored in them. We find
  • it possible to achieve a detailed understanding of the main factors governing single-molecule transport [2][3][4]. Recently, energy-exchange processes between tunneling electrons and vibrational degrees of freedom have been considered. Understanding heat generation and dissipation in the molecular
  • gating from that of the reduction of carbene DOS near the Fermi level due to the adsorbate. The current-induced heating of adsorbate modes reveals the important role of molecule–adsorbate through-space tunneling. By setting the adsorbate electronic structure elements to zero in the calculations we could
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • observed for the composition with 3 wt % loading of MWCNTs. This absorption is characteristic of individually dispersed MWCNTs, whereas strongly bundled MWCNTs do not show an absorption band in 200–1200 nm wavelength region as their photoluminescence is quenched or the carriers are tunneling between the
PDF
Album
Full Research Paper
Published 27 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2) The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3) I(V) scanning tunneling spectroscopy spectra recorded at the hills and valleys
  • . (Adv. Mater. 2014, 26, 2096–2101) that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable. Keywords: intercalation; molybdenum disulfide; scanning tunneling microscopy; silicene; two
  • the growth of Si on MoS2. Our scanning tunneling microscopy (STM) observations are very similar to those reported by Chiappe et al. [30]. However, we arrive at the conclusion that Si intercalates between the MoS2 layers. In order to verify our conclusion we have performed additional spectroscopic
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • Weimin Wang Roger I. G. Uhrberg Department of Physics, Chemistry, and Biology, Linköping University, S-581 83 Linköping, Sweden 10.3762/bjnano.8.195 Abstract We report a study of structural and electronic properties of a germanium layer on Al(111) using scanning tunneling microscopy (STM), low
  • suggested and reported to be consistent with scanning tunneling microscopy (STM) data assuming that only 3 out of 18 Ge atoms inside the (√19×√19) unit cell were observed. These three atoms were about 0.6 Å higher than the rest of the Ge atoms. Later, Švec et al. [9] studied a (√19×√19) superstructure of
  • bilayer germanene on Cu(111) at room temperature. Scanning tunneling spectroscopy showed a “V” shaped density of states, which was also observed by Zhang et al. [12], who synthesized germanene on MoS2 at room temperature. Al(111) was chosen as a substrate to deposit germanene by Derivaz et al. [13] with
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

Spin-dependent transport and functional design in organic ferromagnetic devices

  • Guichao Hu,
  • Shijie Xie,
  • Chuankui Wang and
  • Carsten Timm

Beilstein J. Nanotechnol. 2017, 8, 1919–1931, doi:10.3762/bjnano.8.192

Graphical Abstract
  • interlayer has been studied in many experiments, motivated by the long spin relaxation time [4]. Examples are the giant magnetoresistance (GMR) and the room-temperature tunneling magnetoresistance (TMR) in LSMO/Alq3/Co junctions [6][7][8]. The MR in the ferromagnet/OF/ferromagnet junction Co/poly-BIPO/Co has
  • bias of 1.0 V. The mechanism of the multi-state MR can be understood as follows: In the present device, electrons tunnel between the Co electrodes through the OF interlayer. In the two-current model [47], and according to the band structure of Co, the electron tunneling in C1 (C2) happens between the
  • two half-filled spin-down (spin-up) Co bands. The situation is different in C3 (C4), where the tunneling takes place from the completely filled spin-up (spin-down) band of the left electrode to the half-filled spin-up (spin-down) bands of the right electrode. This difference is the origin of TMR in
PDF
Album
Review
Published 13 Sep 2017

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • , and suppress the nanoribbon–substrate interaction. The proposed structural model reproduces well all the experimental findings. Keywords: density functional theory (DFT); scanning tunneling microscopy (STM); silicene; Si nanoribbons; Introduction The discovery of the exotic nature of graphene [1][2
  • really been obtained. The same problem concerns Si nanoribbons (NRs) grown on the Ag(110) surface [32][33][34][35][36][37][38][39][40]. The scanning tunneling microscopy (STM) images show isolated 1.6 nm wide ribbons [32][35][41]. However, no hexagonal structure is visible in the STM topography. First
  • substrates. Experimental and Computational Details All the measurements have been done under UHV conditions with a 4He-cooled scanning tunneling microscope (Omicron) working at 4.5 K. For STM/STS measurements electrochemically etched tungsten was used. The Pb/Si(111) sample was prepared in situ by
PDF
Album
Full Research Paper
Published 05 Sep 2017

Non-intuitive clustering of 9,10-phenanthrenequinone on Au(111)

  • Ryan D. Brown,
  • Rebecca C. Quardokus,
  • Natalie A. Wasio,
  • Jacob P. Petersen,
  • Angela M. Silski,
  • Steven A. Corcelli and
  • S. Alex Kandel

Beilstein J. Nanotechnol. 2017, 8, 1801–1807, doi:10.3762/bjnano.8.181

Graphical Abstract
  • , as well as those formed during the deposition of 9-fluorenone, which does not exhibit this anomalous clustering behavior. Keywords: metastable clusters; 9,10-phenanthrenequinone; scanning tunneling microscopy; self-assembly; Introduction The goal of crystal engineering is to utilize a combination
  • polymorphs of the bulk crystal structure [21]. Additionally, the asymmetry of the phenanthrene ring should allow for the determination of the molecular orientation during scanning tunneling microscopy experiments. This molecule has been studied in the past for its role in surface passivation of semiconductor
  • interfaces [22] and its assembly behavior at the liquid–solid interface on graphite [23] but not as extensively on metal surfaces. Scanning tunneling microscopy is well suited for interrogating large supramolecular structures, as well as determining the structure and orientation of individual molecules at a
PDF
Album
Full Research Paper
Published 30 Aug 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • this section. Thin films of the free-base porphyrin H2TPP(OH)4 were deposited by OMBD (pressure approximately 1 × 10−8 mbar, temperature around 350 °C) on Au(111) and Ag(110). The thin films were characterized by scanning tunneling microscopy (STM) experiments with a variable-temperature STM device
  • 2. Scanning tunneling spectroscopy measurements enabled us to determine the HOMO–LUMO gap of 1 to be 2.0 ± 0.1 and of 2 to be 2.5 ± 0.1 eV. If the STM is measured inside the HOMO–LUMO gaps, geometry effects dominate and all molecules in the ordered layer look quite identical. This changed when bias
PDF
Album
Review
Published 29 Aug 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • ]. Hydrogenated α- and β-silicene on a Ag(111) surface Scanning tunneling microscopy (STM) measurements revealed that hydrogenated silicene on Ag(111) surfaces exhibits two different perfectly ordered phases, which are hydrogenated α-(3×3)-silicene and hydrogenated β-(3×3)-silicene [30]. For simplicity, we name
PDF
Album
Full Research Paper
Published 23 Aug 2017
Other Beilstein-Institut Open Science Activities