Search results

Search for "zinc" in Full Text gives 242 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • spheres Glass microscope slides were cleaned in ethanol and deionized water in an ultrasonic bath for 3 min, and then dried at 80 °C. In order to obtain the ZnO films, typically, a portion of 10 mL of a 0.1 M aqueous solution of zinc acetate dihydrate [Zn(CH3COO)2·2H2O], and 20 mL of mono-ethanolamine
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • , the carrier concentration of aluminium-doped zinc oxide (AZO) can be shifted from 0.5 to 10 × 1020 cm–3 by varying the concentration of Al, thus contributing to the wide-range SPR (2200–880 nm) [144]. Despite the tunable plasmonic features of semiconductors, some plasmonic semiconductors are
PDF
Album
Review
Published 19 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • magnetic in nature [10][11][12][13]. Among different metal ferrite materials, zinc ferrite (ZnFe2O4) plays a significant role because of its low band gap (1.88 eV), high thermal conductivity, good chemical stability, higher specific strength, magneto-resistive and magneto optical properties and low
  • fabrication cost [14]. ZnFe2O4 is an n-type semiconductor having a direct band gap with suitable band edge positions for various photocatalytic processes. It is a solid solution of ferric oxide and zinc oxide, which greatly enhances the charge carrier separation. To date, various methods such as refluxing
PDF
Album
Full Research Paper
Published 05 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • -driven photocatalysis. Prasannan and Imae reported a simple and facile one-pot synthesis of fluorescent CDs from orange waste peels using the hydrothermal carbonization method. As prepared CDs were combined with zinc oxide (ZnO) to degrade naphthol blue–black azo dye under UV irradiation, and the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch

  • Alexej Bubnov,
  • Cyril Vacek,
  • Michał Czerwiński,
  • Terezia Vojtylová,
  • Wiktor Piecek and
  • Věra Hamplová

Beilstein J. Nanotechnol. 2018, 9, 333–341, doi:10.3762/bjnano.9.33

Graphical Abstract
  • temperatures and the enthalpy changes of the melting points of water, indium and zinc. Spontaneous polarisation The values of the spontaneous polarisation Ps were determined from the polarisation current peak by driving the sample with a triangular electric field at a frequency of 30 Hz and an electric field
PDF
Album
Full Research Paper
Published 29 Jan 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • : density functional theory (DFT); gas sensor; interdigital electrodes; nanocrystalline diamond; sensitivity; zinc oxide (ZnO); Introduction Currently, a number of studies have been focused on developing gas sensors based on nanomaterials and/or nanostructures. Metal oxides are the most common sensing
  • hydrothermal synthesis process. The synthesis was conducted in an equimolar aqueous solution containing zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (C6H12N4). During the synthesis a temperature of 90 °C was maintained for 3 h. The experimental procedure has been described in detail in
  • , the NO2 molecule is rotated to have one oxygen atom face the zinc atom of the surface (T-shape). In the L-shape the one oxygen atom of the gas molecule is also facing the zinc atom of the surface, but with the nitrogen atom parallelly oriented to the surface. The simulated structures consist of a
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • synthesized by thermal decomposition of the as-prepared Ce–Zn precursor and exhibited excellent activity for removing CO [17]. CeO2–ZnO composite hollow microspheres were fabricated via annealing of a precursor of amorphous zinc–cerium citrate hollow microspheres and presented excellent catalytic activity in
PDF
Album
Full Research Paper
Published 16 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • by reducing CO2 in isopropanol to methanol under UV-light irradiation. Experimental Catalyst synthesis Niobium oxide (Nb2O5, 99.99 wt %) was purchased from Aladdin Industrial Corporation. Potassium hydroxide (KOH, 96 wt %), isopropanol (C3H8O, 99.9 wt %), hydrochloric acid (HCl, 36.5 wt %), zinc
PDF
Album
Full Research Paper
Published 30 Oct 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • SiO2 (178.49 mg/g) [54], manganese-impregnated zinc sulphide nanoparticles deposited on activated carbon (191.57 mg/g) [55] and γ-Fe2O3 loaded active carbon (195.55 mg/g) [56]. We believe the efficient removal of MB is mainly attributed to the small pore size and the high specific surface area of CP6
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • been achieved [19][20][21]. Caco-2 cells have been used in the literature to investigate the potential toxic effects of a range of nanoparticles, including microporous silicon [22], silica [23][24][25][26][27][28] and zinc oxide [25]. Though such studies have mainly been performed on undifferentiated
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Evaluation of quantum dot conjugated antibodies for immunofluorescent labelling of cellular targets

  • Jennifer E. Francis,
  • David Mason and
  • Raphaël Lévy

Beilstein J. Nanotechnol. 2017, 8, 1238–1249, doi:10.3762/bjnano.8.125

Graphical Abstract
  • of cadmium selenium (CdSe) and an inorganic zinc sulfide (ZnS) shell and have been applied as fluorescent probes for the labelling of biological structures [1][2]. To make Qdots water soluble, and thus suitable for biological applications, their surface is modified either by coating with hydrophilic
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • conventional thin film counterparts, to see if the discerning ability of the electronic nose is affected by the integration of nanostructured active materials. In particular, we decided to integrate tin dioxide and zinc oxide devices, since these are the most widely used and studied materials for chemical
  • oxides of nickel, tungsten, niobium, zinc and tin. The structures were directly deposited on functional substrates using various techniques and procedures. We have demonstrated that a direct integration with all the three presented deposition techniques is possible, which is an essential feature to
  • ), tin dioxide (SnO2) and zinc oxide (ZnO) nanowires was performed by evaporation–condensation on alumina substrates [50]. It consists of a controlled evaporation of metal oxide powder followed by a condensation of vapor on a catalyzing substrate. The main parameters to optimize during evaporation
PDF
Album
Full Research Paper
Published 06 Jun 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • ), (220) and (311) of the cubic zinc blende (ZB) structure (F−43m, space group 216, a = 0.6077 nm (PC-PDF 19-191)). The NPs exhibit a nearly spherical shape with an average crystalline size estimated to be around 3 nm. The XRD peaks are broad due to the small size of the NPs. The addition of a small
  • radiation, rotating anode, Bragg–Brentano scheme, graphite monochromator) diffractometer. XRD patterns and TEM images of different samples with varying AgCl amount: (a) AgCl_0, (b) AgCl_1, (c) AgCl_4, (d) AgCl_10, (e) AgCl_12 and (f) AgCl_40. (ZB: zinc blende, WZ: wurtzite.) HRTEM images of TP (sample
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • solution. A mechanism for the degradation pathways mediated by the ZnO/ZCIS catalyst is proposed. Interestingly, hydrogen peroxide, H2O2, and singlet molecular oxygen, 1O2, were found to play a key role in the oxidation of Orange II. Experimental Materials Indium acetate (In(OAc)3, 99.99%, Sigma), zinc
  • acetate (Zn(OAc)2, 99.99%, Sigma), copper iodide (CuI, 99.999%, Sigma), dodecanethiol (DDT, >98%, Sigma), oleylamine (OA, 70%, Sigma), 1-octadecene (ODE, 90%, Sigma), zinc oxide (ZnO, 99%, Alfa Aesar), disodium terephthalate (DST, 99+%, Alfa), nitrotetrazolium blue chloride (NBT, >98%, Sigma), leuco
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
PDF
Album
Supp Info
Review
Published 05 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • scalable and relatively cost effective [14][15][16]. In particular, among all the TMO NPs, titanium dioxide [17], manganese oxide [18], iron oxide [19] and zinc oxide [20] have attracted the most attention due to their particular interesting and advantageous properties. By changing the reaction conditions
  • precise, in the following, we categorise the graphene–TMO semiconductor NP hybrids on the basis of their counterpart material oxide (from titanium to zinc) following the periodic table. Titanium dioxide (TiO2)–graphene hybrids Nanocrystalline TiO2 is an interesting material because of its unique optical
  • medium. The Co3O4–graphene hybrid possesses catalytic performance for heterogeneous activation of peroxymonosulfate for the decomposition of phenol [183]. Moreover, the performance of the zinc–air battery (ZAB), fabricated by using this hybrid as the cathode, is found to be closely matched with the
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • last 3d elements, scandium and zinc, the rest of the metals possess several oxidation states. The presence of several stable oxidation states serves as a basis of catalytic activity in redox reactions and is most noticeable for vanadium, chromium, and manganese. In particular, vanadium has the highest
PDF
Album
Full Research Paper
Published 07 Mar 2017

The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)

  • Florent Pessina and
  • Denis Spitzer

Beilstein J. Nanotechnol. 2017, 8, 452–466, doi:10.3762/bjnano.8.49

Graphical Abstract
  • crystallized from the precursor zinc acetate dihydrate dissolved in ethanol with addition of water. From early experiments, primary nanoparticles of 20 nm were found to be agglomerated in sub-size structures, whereas the slightly larger nanoparticles were found much less agglomerated using the classical wet
PDF
Album
Supp Info
Review
Published 17 Feb 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • -Si) solar cells, used for mass production, is composed of a transparent conductive oxide with roughness at the nanoscale on the front (TCO), e.g., tin oxide (SnO2) or zinc oxide (ZnO), followed by p–i–n Si layers (amorphous and/or nanocrystalline) in the cell and a back reflector [1][2]. In such a
  • developed solar cells based on a three dimensional (3-D) design, in which periodically ordered zinc oxide nanocolumns (ZnO NCs) are used as a front electrode, have been of great interest, because they would exceed in the ultimate light trapping and provide excellent charge separation [5][6][7]. Due to the
  • flow. The hydrothermal growth of ZnO nanocolumns was performed from an equimolar aqueous solution of 25 mmol zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine ((CH2)6N4) in an aqueous bath at 90 °C for 3 h [15][23]. During the nanocolumns growth, the substrate was mounted upside-down
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

  • Nina J. Blumenstein,
  • Fabian Streb,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Zaklina Burghard and
  • Joachim Bill

Beilstein J. Nanotechnol. 2017, 8, 296–303, doi:10.3762/bjnano.8.32

Graphical Abstract
  • . Keywords: piezoresponse force microscopy; template-controlled deposition; ZnO; Introduction Zinc oxide is a wide band gap semiconductor. Thin films of it can be applied in, e.g., LEDs [1][2][3] or transistors [4][5][6]. Furthermore, due to its piezoelectricity, it can be incorporated in actuators [7] or
  • tetraethylammonium hydroxide (TEAOH, Sigma-Aldrich, 1.5 m in methanol) were prepared. The PVP and zinc acetate solutions were mixed and the TEAOH was added drop-wise with a peristaltic pump under gentle stirring. The final composition was [Zn2+] = 11.34 mm, [PVP] = 8.57 mm and [TEAOH] = 25 mm. The coated wafers were
PDF
Album
Full Research Paper
Published 30 Jan 2017

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed
  • semiconductor in DSSCs [2][3][4][5]. Besides, the TiO2 offers high electronic mobility for photogenerated electron collection, a suitable band gap, which adapts to the injection of the electrons of most studied dyes, and high surface area to enhance the dye loading by anchoring the dye [6][7]. Zinc oxide (ZnO
  • physical properties of the photoanode. Experimental Both ZnO NRs and NWs were grown on FTO substrates (1.5 × 1.5 cm2) by CBD [8][22]. Before the ZnO NR preparation, a seed layer of ZnO crystallites was deposited by spin coating (1000 rpm, 60 s) using a solution of 5 mM zinc acetate dihydrate in ethanol
PDF
Album
Full Research Paper
Published 30 Jan 2017

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • used in the study (from left to right): Zn(II)meso-tetraphenylporphyrin (ZnTPP), Zn(II)phthalocyanine (ZnPc), and Cu(II)phthalocyanine (CuPc). Color coding: dark gray (carbon), light gray (hydrogen), blue (nitrogen), large violet (zinc), large yellow (copper). Acknowledgements This work was supported
PDF
Album
Full Research Paper
Published 11 Jan 2017

Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 82–90, doi:10.3762/bjnano.8.9

Graphical Abstract
  • chemical composition of pristine and Pd-functionalized ZnO NRs, annealed at 550 °C. The value for O–Zn refers to the atomic percentage of oxygen bound to zinc. Comparison of the response time (tResponse) and recovery time (tRecovery) between pristine and Pd-modified ZnO NRs at various C4H10 concentrations
PDF
Album
Full Research Paper
Published 10 Jan 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • using the low cost, ecologically friendly sol–gel/dip coating method. The precursors, zinc acetate dihydrate (Merck) as a Zn2+ source and tin(II) 2-ethylhexanoate (Sigma-Aldrich), were dissolved in ethanol. Triethanolamine (Baker Analyzed) was used as a chelating agent/catalyst. The obtained solutions
  • this paper where tin–zinc ceramic composites were investigated [35]. In this study the conductivity changes leading to different sensor response were motivated by the presence of different phases having different electric behaviors (ZnO, SnO2, and Zn2SnO4 phases were identified in the composite sensing
PDF
Album
Full Research Paper
Published 22 Dec 2016
Other Beilstein-Institut Open Science Activities