Search results

Search for "Si substrate" in Full Text gives 202 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • first successful synthesis of patterned BNNTs was performed by catalytic CVD [56]. To produce pure and vertically aligned BNNTs, a Si substrate was coated with Al2O3 of 30 nm thickness, then MgO, Ni, or Fe catalysts was deposited on the surface of the Al2O3 by pulsed laser deposition. This substrate was
  • setup, (b) stretching of dense BNNTs from the sample surface, (c) high magnification SEM image of BNNTs, (d) SEM images of slightly compressed BNNTs on a Si substrate, and (e) cross-sectional view of vertically aligned BNNTs. Figure adapted with permission from [56], copyright 2010 American Chemical
PDF
Album
Review
Published 08 Jan 2015

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980–1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si–Si mode, NW-transverse acoustic (TA), Sisubstrate–TO and NW-no-phonon
  • -shell NWs using a condensation process that we have developed. Three NW samples were prepared for this study: Sample (A), where the NWs are grown randomly across the Si substrate; sample (B), where the nanowires decorate the edges of 400 × 400 µm2 boxes; and sample (C), where the NWs fill 400 × 400 µm2
  • spectra obtained for sample (C) with excitation at 405 and 438 nm are compared in Figure 3. The two spectra exhibit the same features, most of which arise from the Si substrate together with a few arising from instrumental effects. The main difference between them, as also observed for the other two
PDF
Album
Full Research Paper
Published 30 Dec 2014

Si/Ge intermixing during Ge Stranski–Krastanov growth

  • Alain Portavoce,
  • Khalid Hoummada,
  • Antoine Ronda,
  • Dominique Mangelinck and
  • Isabelle Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2374–2382, doi:10.3762/bjnano.5.246

Graphical Abstract
  • intermixing during Ge island formation, the Si cap or Si substrate/island interface is abrupt, exhibiting weak Si/Ge intermixing during Si deposition. The islands keep their usual {111} and {113} surface facets under the Si cap, and Ge segregation is observed only in {113} facets. The thickness and the Ge
  • preparation, the second layer of islands (the WL and a small part of a surface island are recognizable), the Si buffer, the first layer of islands, and the Si substrate. APT analysis allows one-dimensional (1D) atomic composition profiles to be determined in any direction in the analyzed volume. Figure 4
  • an average thickness ≈2.7 nm) and from 5 to 30 atom % Ge, respectively. Figure 5a shows a TEM cross-sectional view of a typical dome island exhibiting {111} and {113} facets forming an angle of 54.7° and 25.2°, respectively, with the (001) surface of the Si substrate [40]. Figure 5b,c presents only
PDF
Album
Full Research Paper
Published 09 Dec 2014

Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

  • Vinay Kabra,
  • Lubna Aamir and
  • M. M. Malik

Beilstein J. Nanotechnol. 2014, 5, 2216–2221, doi:10.3762/bjnano.5.230

Graphical Abstract
  • using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on
  • an n-Si substrate using a dip coating technique. The device was then characterized by current–voltage (I–V) and capacitance–voltage (C–V) measurements. The effect of UV illumination on the I–V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction
  • nanoparticles were found to be +5 × 1014 cm−3, 31.63 cm2/Vs, and 395.19 Ωcm, respectively. These results clearly indicate that the synthesized ZnO nanoparticles have p-type conductivity. A Hall measurement of the n-Si substrate was also performed on a silicon wafer with dimensions 1.4 × 0.9 × 0.04 cm3. The
PDF
Album
Full Research Paper
Published 24 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • obtained the different velocities of the metallic (Au and Ta) film surfaces of 0.6 m/s and 1.9 m/s below and above the melting threshold, respectively [24]. Interestingly, the velocity values in the range of 20–70 m/s characteristic of the instability driven processes (i.e., film detachment from Si
  • substrate, followed by dewetting and droplet formation) are in reasonable agreement with those observed in femtosecond experiments [25]. Similar to other laser-based methods, LNS results in a variety of unique properties not reproducible by other production routes. This contributes to new research on
PDF
Album
Review
Published 13 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • film acts as a back electrode. Samples for cs-AFM measurements were deposited on a Si substrate with a top SiO2 layer of 1 µm in order to eliminate possible leakage current. Figure 6b shows a 5 × 5 µm2 topography image of an 80 nm thick TbPc2 film which has the highest roughness, with respect to Figure
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Towards bottom-up nanopatterning of Prussian blue analogues

  • Virgile Trannoy,
  • Marco Faustini,
  • David Grosso,
  • Sandra Mazerat,
  • François Brisset,
  • Alexandre Dazzi and
  • Anne Bleuzen

Beilstein J. Nanotechnol. 2014, 5, 1933–1943, doi:10.3762/bjnano.5.204

Graphical Abstract
  • particles in the reaction media. Work is in progress in order to fully control this step. AFM images of a) the Si substrate b) Au10, c) Au20 and d) Au50. a) AFM and b) SEM images of the sample Au10NC. Depth distribution histogram in the c) dark and d) light areas. SEM micrographs of a) Au20NC and b) Au50NC
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2014

High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology

  • Jorge Trasobares,
  • François Vaurette,
  • Marc François,
  • Hans Romijn,
  • Jean-Louis Codron,
  • Dominique Vuillaume,
  • Didier Théron and
  • Nicolas Clément

Beilstein J. Nanotechnol. 2014, 5, 1918–1925, doi:10.3762/bjnano.5.202

Graphical Abstract
  • use an EBPG 5000 Plus from Vistec Lithography. The (100) Si substrate (resistivity = 10−3 Ω·cm) is cleaned with UV/ozone and native oxide etched before resist deposition. The e-beam lithography has been optimized by using a 45 nm-thick diluted (3:5 with anisole) PMMA (950 K). For the writing, we use
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • substrate. The sharp feature just before Si substrate peak is a non-Bragg scattering peak. Conclusion We have reported the synthesis and the burrowing of Pt NPs due to medium-energy neon ion irradiation for Pt thin films deposited on a silicon substrate (Pt–Si). The ion fluence was kept constant (1017 ions
  • polycrystalline in nature and (111) and (200) planes are clearly visible in the XRD pattern [47]. The reduced intensities and the broadening of the Pt peaks in the irradiated film confirm the Pt loss on the surface and the formation of NPs. The peak at around 2θ = 56º in the irradiated film is due to the Si
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • simple MOS structure, with Ge NCs embedded in the SiO2 film deposited on a Si substrate. In order to check for the existence of the deep level traps coming from the Si/SiO2 interface, temperature dependent C–V measurements have been performed. The activation energy of the electron emission has been
PDF
Album
Review
Published 16 Oct 2014

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

  • Christoph Nick,
  • Sandeep Yadav,
  • Ravi Joshi,
  • Christiane Thielemann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2014, 5, 1575–1579, doi:10.3762/bjnano.5.169

Graphical Abstract
  • structured on the silicon substrate. (d) The follow up growth of CNTs proceeds selectively on these spatially defined catalyst islands in a vertically aligned fashion on the Si substrate (left side), or in a randomly oriented fashion on an Au substrate (right side). SEM images of neurons cultured on randomly
PDF
Album
Supp Info
Video
Full Research Paper
Published 17 Sep 2014

Formation of CuxAu1−x phases by cold homogenization of Au/Cu nanocrystalline thin films

  • Alona Tynkova,
  • Gabor L. Katona,
  • Gabor A. Langer,
  • Sergey I. Sidorenko,
  • Svetlana M. Voloshko and
  • Dezso L. Beke

Beilstein J. Nanotechnol. 2014, 5, 1491–1500, doi:10.3762/bjnano.5.162

Graphical Abstract
  • . Examples for the latter are the metallization of integrated circuits (the formation of a nanometric NiSi layer on the Si substrate [1][2]), or the production of thin chemically ordered FePt films for perpendicular magnetic data recording [3][4]. Regarding the basic understanding of such reactions the
  • ), Au(25nm)/Cu(12nm), Au(10nm)/Cu(25nm) and Au(10nm)/Cu(15nm). During the deposition of metal layers the Si substrate was kept at room temperature and the Ar base pressure was set at 0.5 Pa. The rates of the deposition for Au and Cu layers were 0.85 nm/s and 0.5 nm/s, respectively. The samples were
PDF
Album
Full Research Paper
Published 10 Sep 2014

Topology assisted self-organization of colloidal nanoparticles: application to 2D large-scale nanomastering

  • Hind Kadiri,
  • Serguei Kostcheev,
  • Daniel Turover,
  • Rafael Salas-Montiel,
  • Komla Nomenyo,
  • Anisha Gokarna and
  • Gilles Lerondel

Beilstein J. Nanotechnol. 2014, 5, 1203–1209, doi:10.3762/bjnano.5.132

Graphical Abstract
  • scanning electron beam lithographic patterning of a 600 nm thick hydrogen silsesquioxane (HSQ) resist layer on a Si substrate. 20 patterns each with a size of 500 × 500 µm2 were fabricated on a Si substrate of 2 × 2 cm2. Si substrates were cleaned with acetone and then with a piranha solution for 24 h at
PDF
Album
Full Research Paper
Published 04 Aug 2014

Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures

  • Andreas Landefeld and
  • Joachim Rösler

Beilstein J. Nanotechnol. 2014, 5, 1066–1070, doi:10.3762/bjnano.5.118

Graphical Abstract
  • axis [13]. The forging tools were machined by focused ion beam milling at the corner of a single crystalline Si-substrate. Varying tools in different positions were produced to allow several forging steps after each other (Figure 1). All of these tools are based on a spring principle similar to so
PDF
Album
Supp Info
Letter
Published 16 Jul 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • performs better than the titania on the Si substrate (Figure 4). These results suggest the beneficial influence of a softer substrate in improving the scratch resistance of the titania films. We refer to this as a “cushioning effect”. Taking the Young's modulus as a measure of the substrate compliance
  • to 53% of that for the control Si substrate for the 8 nm titania on PDMS sample, and to 78% of the control for 36 nm of titania on PDMS. This compares favorably to the experimental results of Figure 10, where the friction coefficient for the 8 nm titania on PDMS is 46% that of the control, and for
  • µN. Applied load vs friction force curves and µ evaluated by lateral force microscopy. FEA model for 7 nm titania layer for 10 nN force showing z-component of global stress distribution for a) PDMS substrate, and b) Si substrate. Inset shows the deformation, with z enlarged by 7× for PDMS and 70× for
PDF
Album
Full Research Paper
Published 10 Jul 2014
Graphical Abstract
  • structurally well characterized nanocrystals deposited on a Au film/Si substrate offer an attractive opportunity for performing spectro-electrochemical and in particular spectro–electrocatalytic measurements under enforced and well controlled electrolyte mass transport conditions on structurally well defined
  • serving as chemically inert and stable and electrically conducting substrate, which in turn is deposited on a Si prism. The Au films have to be thin enough to be FTIR transparent and thick enough to exhibit sufficient electric conductivity and fully cover the Si substrate. The gold thin film was prepared
PDF
Album
Full Research Paper
Published 28 May 2014

Analytical development and optimization of a graphene–solution interface capacitance model

  • Hediyeh Karimi,
  • Rasoul Rahmani,
  • Reza Mashayekhi,
  • Leyla Ranjbari,
  • Amir H. Shirdel,
  • Niloofar Haghighian,
  • Parisa Movahedi,
  • Moein Hadiyan and
  • Razali Ismail

Beilstein J. Nanotechnol. 2014, 5, 603–609, doi:10.3762/bjnano.5.71

Graphical Abstract
  • -based devices, graphene with its outstanding properties such as consuming less energy and faster heat dissipating show a great promise in electrolyte-gated graphene field-effect transistors (EGFETs) [20]. An EGFET fabricated on a SiO2/Si substrate with gold source and drain electrodes and a graphene
PDF
Album
Full Research Paper
Published 09 May 2014

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • experiment NDs from isopropanol solution were dispersed onto both ZnO nano/microrods and a Si substrate. If a lithography technique is employed to grow ordered ZnO nanorods onto a lattice-constant-matched substrate, nanoparticles on the substrate can be avoided and the size of nanorod cavity can be well
  • process (20 mM, 6 h), as evidenced by the top-view image in Figure 2b and the side-view image in Figure 1c. Among the nanorods, few show incomplete encapsulation of agglomerated NDs. as can be seen in Figure 2d. We cut the Si substrate to take side-view images. Some nanorods were fractured at the edge of
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • supplementary coating layer in chamber B, while traveling through the metallic vapor generated by SG2, which is carefully kept below supersaturation. Finally, particles are extracted in C, where they are deposited onto a Si substrate or TEM grids for further analysis. Gas dynamics and NP transport Particle
PDF
Album
Full Research Paper
Published 14 Apr 2014

Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

  • Maria B. Wieland,
  • Anna G. Slater,
  • Barry Mangham,
  • Neil R. Champness and
  • Peter H. Beton

Beilstein J. Nanotechnol. 2014, 5, 394–401, doi:10.3762/bjnano.5.46

Graphical Abstract
  • −1 correspond to the Si substrate, the peak at 720 cm−1 and the region between 1400 and 1600 cm−1 with the relatively sharp line at around 1470 cm−1 are characteristic for C60; [31][32] insert: fluorescence emission spectrum (excitation wavelength = 532 nm) of the same samples with the characteristic
PDF
Album
Full Research Paper
Published 02 Apr 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • measurements were performed under ambient conditions using amplitude modulated KPFM, both having a great impact on the results. In this work we study the work function of SLM on a standard SiO2/Si substrate using non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy in situ. In our
PDF
Album
Full Research Paper
Published 13 Mar 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • Gd2O3 nanoparticles. The Gd(3d) spectrum of Gd2O3 nanoparticles coated onto a Si substrate is shown in Figure 4A. The Gd(3d) level consists of a spin orbit split doublet, with the Gd(3d5/2) and Gd(3d3/2) peaks at 1188.25 and 1219.98 eV, respectively. The line shape and peak positions are in good
  • electron diffraction (SAED) pattern recorded from the Gd2O3 nanoparticles. XRD measurements of biosynthesized Gd2O3 nanoparticles. XPS data showing the (A) Gd(3d), (B) C(1s), (C) O(1s) and (D) N(1s) core level spectra recorded from biosynthesized Gd2O3 nanoparticles film cast onto a Si substrate. The raw
  • nanoparticles and the obtained three rings corresponding to the {400}, {321} and {222} planes of Gd2O3 and are in good agreement with the reported values [25]. Figure 3 displays the X-ray diffraction (XRD) analysis of the biosynthesized gadolinium oxide nanoparticles carried out by depositing Gd2O3 powder on Si
PDF
Album
Full Research Paper
Published 07 Mar 2014

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • microscopy (TEM) grid, respectively. As regards the investigation of the crosslinking process, the helium ion beam was programmed to irradiate NBPT SAMs with a series of different doses. The separation of cross-linked and non-cross-linked SAMs was conducted by transferring them onto a Si substrate with an
  • cross-linked SAM is transferred onto another substrate, e.g., SiO2/Si. Figure 1e demonstrates a successful transfer of structured CNMs in Chinese characters which means nanomembranes: the grey background is SiO2/Si substrate and the darker features are transferred CNMs. For the fabrication of
  • been transferred onto a SiO2/Si substrate. Interestingly, the first step is the formation of circular shaped nuclei, which is analogous to the nucleation for thin films or polymer crystallization [23]. After a dose of 176 µC/cm2 (Figure 3a), the average diameter of the nuclei is 9.0 ± 1.7 nm, which
PDF
Album
Full Research Paper
Published 21 Feb 2014

Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Grzegorz Luka,
  • Lukasz Wachnicki,
  • Sylwia Gieraltowska,
  • Krzysztof Kopalko,
  • Eunika Zielony,
  • Piotr Bieganski,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2014, 5, 173–179, doi:10.3762/bjnano.5.17

Graphical Abstract
  • , in the ALD process with 15 cycles, ZnO nanoseeds were deposited on a Si substrate (Figure 1a). The deposited ZnO nano-islands nucleate growth of ZnO nanorods in a hydrothermal process, performed in a Ertec01-03 Magnum reactor [36][37][38][39]. The growth of the ZnO nanorods was performed at
  • highest value of generated photocurrent flows through the junction with an illumination in the range of 900 nm to 1000 nm, i.e., when carriers are generated in a Si substrate. Samples with a similar value of the shunt resistance (A, B) have a similar photoresponse curves. Quantum efficiency values
PDF
Album
Full Research Paper
Published 14 Feb 2014

3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

  • Loïc Assaud,
  • Evans Monyoncho,
  • Kristina Pitzschel,
  • Anis Allagui,
  • Matthieu Petit,
  • Margrit Hanbücken,
  • Elena A. Baranova and
  • Lionel Santinacci

Beilstein J. Nanotechnol. 2014, 5, 162–172, doi:10.3762/bjnano.5.16

Graphical Abstract
  • deposition from Pd(hfac)2 and formaldehyde. In situ QCM measurements of Pd mass gain during the ALD process for Pd. (a) General evolution and (b) enlarged view of one ALD cycle. SEM top views of Pd deposits after 100 ALD cycles onto (a) as-grown NiO and (b) reduced NiO films on Si substrate. (c) AFM image of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2014
Other Beilstein-Institut Open Science Activities