Search results

Search for "accelerating voltage" in Full Text gives 154 result(s) in Beilstein Journal of Nanotechnology.

Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

  • Hamonangan Nainggolan,
  • Saharman Gea,
  • Emiliano Bilotti,
  • Ton Peijs and
  • Sabar D. Hutagalung

Beilstein J. Nanotechnol. 2013, 4, 325–329, doi:10.3762/bjnano.4.37

Graphical Abstract
  • field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc) and melting temperature (Tm) were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of
  • electron microscope (FE-SEM) was used to observe the morphology of the FBC/Mater-Bi composites. All samples were coated with gold and observed by using an accelerating voltage of 10 kV. Differential scanning calorimetric (DSC) experiments were carried out by using a Perkin Elmer Pyris DSC-7 calorimeter
PDF
Album
Full Research Paper
Published 23 May 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • amount of amorphous carbon due to the fragmentation of the organo-metal [(CH3)3Pt(CpCH3)], used as precursor for Pt deposition, can be reduced by using electron-beam irradiation with a low accelerating voltage as a post-deposition treatment. Results and Discussion 3D distribution of Pt nanoclusters
  • decomposition and further deposition is induced by interaction between electrons and materials, deposition can be tailored by tuning the accelerating voltage of the electron beam to control their transmission through a fixed thickness of target so as to realize the deposition on one or more facets. Stripe
  • is studied by changing the beam accelerating voltage (primary energy, PE) and dwell time, whereas the beam current is not varied in the current study. Figure 6 summarizes the deposition of Pt for an increasing PE of 1 kV, 3 kV, 5 kV, 10 kV, 15 kV and 30 kV in each row. For each PE, different dwell
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  • Eric R. Waclawik,
  • Jin Chang,
  • Andrea Ponzoni,
  • Isabella Concina,
  • Dario Zappa,
  • Elisabetta Comini,
  • Nunzio Motta,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

Graphical Abstract
  • determined by transmission electron microscope (TEM, JEOL-2100) with an accelerating voltage of 200 kV. For TEM experiments, the specimens were prepared by deposition of a dilute solution of the colloid onto a carbon-coated copper grid and drying at room temperature. Thermogravimetric (TG) measurements were
PDF
Album
Full Research Paper
Published 02 May 2012

Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

  • Jin-Ming Wu,
  • Igor Djerdj,
  • Till von Graberg and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2012, 3, 123–133, doi:10.3762/bjnano.3.13

Graphical Abstract
  • diffraction (XRD) measurements were performed in a Bruker D8 diffractometer with an accelerating voltage of 40 kV and a current of 40 mA, with Cu Kα radiation. The 2-D-SAXS measurements were carried out by using a Nonius rotating anode setup (Cu Kα radiation with λ = 0.154 nm) featuring a three-pinhole
PDF
Album
Supp Info
Video
Full Research Paper
Published 13 Feb 2012
Other Beilstein-Institut Open Science Activities