Search results

Search for "atomic force microscopy (AFM)" in Full Text gives 398 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • chosen to be 265 °C slightly above the minimum crystallization temperature of Sb2S3. The morphology was studied with SEM and atomic force microscopy (AFM). Possible changes in electronic quality with crystallization temperature were investigated via photothermal deflection spectroscopy (PDS) where the
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • capping layer the dopant monolayer is essentially “burnt” off during high-temperature annealing. Cap removal was carried out using a standard buffered oxide etch. Atomic force microscopy (AFM) was used to acquire high-resolution topographic images to evaluate the surface quality throughout MLD processing
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • interference microscopy, and atomic force microscopy (AFM). A. gibbosa tube feet and footprints were labelled with antibodies raised against the adhesive protein Sfp1 from A. rubens, but no cross-reactivity was observed. To detect carbohydrate moieties, we performed lectin labelling with 24 commercially
  • ). The mesh size varied from 1 to 5 µm in diameter (Figure 4C). At higher magnification, the fine structure of both layers appeared similar (Figure 4D). The footprint topography was confirmed with 3D confocal interference microscopy and atomic force microscopy (AFM) (Figure 5). 3D confocal interference
  • Metrology A/S) was used to determine the roughness parameters from the confocal images. Atomic force microscopy (AFM) Footprints were collected on clean microscope glass slides, rinsed with MilliQ water and air dried. The footprints were then imaged in air and under ambient conditions with a Dimension Icon
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • work, a drug-delivery nanoplatform system consisting of polymeric celluloce acetate (CA) scaffolds loaded with dexamethasone was fabricated through electrospinning. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated the successful fabrication of these structures
PDF
Album
Full Research Paper
Published 13 Jul 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • , microstructure, and performance is necessary as a function of device design, processing, and in-service conditions. Atomic force microscopy (AFM) has been a valuable tool for such characterization, especially of materials properties and device performance at the nanoscale. In the case of thin-film solar cells
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • magnetometer (VSM) with an applied magnetic field between −20 kOe and 20 kOe at room temperature (SQUID-VSM, USA). Atomic force microscopy (AFM) was performed on an AFM instrument (NTEGRA Spectra, Russia) using tapping mode. The samples were deposited onto clean Si substrates and dried at 60 °C. UV–vis
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction

  • Juan L. Palma,
  • Alejandro Pereira,
  • Raquel Álvaro,
  • José Miguel García-Martín and
  • Juan Escrig

Beilstein J. Nanotechnol. 2018, 9, 1728–1734, doi:10.3762/bjnano.9.164

Graphical Abstract
  • has a controlled atmosphere of hydrogen (4%) balanced with argon (96%) at an overpressure of 400 mbar with a set temperature of 430 °C, for 4 h [32][33]. This process allows for the conversion of Fe2O3 to Fe3O4, which exhibits a strong magnetic signal. Atomic force microscopy (AFM) measurements have
PDF
Album
Full Research Paper
Published 11 Jun 2018

Closed polymer containers based on phenylboronic esters of resorcinarenes

  • Tatiana Yu. Sergeeva,
  • Rezeda K. Mukhitova,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Polina D. Klypina,
  • Albina Y. Ziganshina and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 1594–1601, doi:10.3762/bjnano.9.151

Graphical Abstract
  • diameter of p(SRA-B) is about 130 nm as evident from atomic force microscopy (AFM) images (Figure 1). The average molecular weight determined by static light scattering (SLS) measurements, is about 1600 ± 90 kDa (see Supporting Information File 1, Figure S2). In the IR spectrum of p(SRA-B), the band
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • relatively new technique based on atomic force microscopy (AFM): An AC voltage with the same frequency as the contact resonance frequency of the tip–sample contact is applied to a conductive tip. [22][23]. The induced electrical field in the material under investigation is extremely localized due to the
PDF
Album
Full Research Paper
Published 28 May 2018

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • examined by scanning electron microscopy (SEM, Philips, XL 30 S FEG and Hitachi, S-4800) and atomic force microscopy (AFM, Nanotop, NT-206 (Belarus) and Solver P47H, NT-MDT Co., Russia). Computer processing of the experimental data was carried out using the software package Surface Explorer Document (SED
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

Induced smectic phase in binary mixtures of twist-bend nematogens

  • Anamarija Knežević,
  • Irena Dokli,
  • Marin Sapunar,
  • Suzana Šegota,
  • Ute Baumeister and
  • Andreja Lesac

Beilstein J. Nanotechnol. 2018, 9, 1297–1307, doi:10.3762/bjnano.9.122

Graphical Abstract
  • , obtained by atomic force microscopy (AFM) imaging, is in the range of 6–7 nm. The induction of the smectic phase in the mixtures containing 55–80 mol % of BB was confirmed using polarising optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction. The origin of the
  • phase. Various spectroscopic techniques and molecular dynamic calculations were used in an attempt to determine the interactions responsible for the induction of the smectic phase. Atomic force microscopy (AFM) measurements performed on the mixtures enriched with CBI showed that the distance between
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • electrostatic force microscopy (EFM) on organic photovoltaic blends [14][15][16]. By applying a bias pulse to the atomic force microscopy (AFM) tip, Schirmeisen et al. studied the ion transport in solid electrolytes [17]. By applying bias pulses across organic field-effect transistors (OFETs) electronic
PDF
Album
Full Research Paper
Published 24 Apr 2018
Graphical Abstract
  • matrix of OTS showed minimal areas of nonspecific adsorption. The AFM studies provide insight into the mechanism of the self-polymerization of CMPS as a platform for constructing porphyrin heterostructures. Keywords: atomic force microscopy (AFM); nanostructures; particle lithography; porphyrin; self
  • with a surface orientation defined by the substituents [20]. The self-assembly of manganese meso-tetra(4-pyridyl)porphyrin on Cu(111) was studied using low temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to resolve molecular structures by Chen et al. [21]. A
  • porphyrins and organosilanes. With ex situ steps of particle lithography, the successive addition of molecules through chemical reactions in solution can be evaluated by measuring changes in the heights and morphology of nanostructures. Using high-resolution atomic force microscopy (AFM), surface changes can
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

  • Miead Nikfarjam,
  • Enrique A. López-Guerra,
  • Santiago D. Solares and
  • Babak Eslami

Beilstein J. Nanotechnol. 2018, 9, 1116–1122, doi:10.3762/bjnano.9.103

Graphical Abstract
  • Abstract In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip–sample forces
  • the invention of atomic force microscopy (AFM), researchers have sought to increase the number of observables that are recorded during a single-pass measurement, as well as improve the sensitivity with which those observables are recorded [1][2][3][4][5]. In an effort to control the sensitivity and
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • outside and inside the sample. MFM is a microscopy technique that is closely related to atomic force microscopy (AFM) [31]. The scanning tip is magnetized and is therefore sensitive to magnetic fields generated by the sample. Attractive and repulsive forces between the tip and the sample are measured and
PDF
Album
Full Research Paper
Published 03 Apr 2018

Automated image segmentation-assisted flattening of atomic force microscopy images

  • Yuliang Wang,
  • Tongda Lu,
  • Xiaolai Li and
  • Huimin Wang

Beilstein J. Nanotechnol. 2018, 9, 975–985, doi:10.3762/bjnano.9.91

Graphical Abstract
  • Engineering, Ohio State University, 2041 College Rd., Columbus, OH 43210, USA 10.3762/bjnano.9.91 Abstract Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features
  • force microscopy (AFM) has become an important device in the fields of nanoscale imaging [1][2][3][4][5][6], nanoscale manipulation [7][8], and material property characterization [9][10][11][12][13] because of its ultra-sensitivity in force and displacement measurement. Among the different applications
  • . Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method. Keywords: atomic force microscopy; contour expansion; image flattening; polynomial fitting; sliding window; Introduction Since its invention, the atomic
PDF
Album
Full Research Paper
Published 26 Mar 2018

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • /bjnano.9.87 Abstract This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded
  • quantification in atomic force microscopy (AFM) techniques, there exists a myriad of unexplained measurement phenomena caused by mechanical interactions between the scanning AFM tip and the material sample under test. In this article, we show how the velocity at which the tip is swept across the sample surface
PDF
Album
Full Research Paper
Published 21 Mar 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • studies and applications. Here, we report a novel method for the characterization of local dielectric distributions based on surface adhesion mapping by atomic force microscopy (AFM). The two-dimensional (2D) materials graphene oxide (GO), and partially reduced graphene oxide (RGO), which have similar
  • : adhesion; atomic force microscopy (AFM); graphene oxide (GO); nanoscale dielectric properties; reduced graphene oxide (RGO); Introduction The local dielectric distribution is a key factor that influences the physical properties and functionalities of various materials such as polymer nanocomposites [1][2
  • ][3][4], carbon nanotube compounds [5][6][7][8], metal–dielectric films [9][10][11][12], and biomembranes [13][14][15]. Understanding the behaviour of these complex nanostructured systems requires precise morphological and dielectric characterization approaches on the nanometre scale. Atomic force
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique

  • Vladimir N. Popok,
  • Cesarino M. Jeppesen,
  • Peter Fojan,
  • Anna Kuzminova,
  • Jan Hanuš and
  • Ondřej Kylián

Beilstein J. Nanotechnol. 2018, 9, 861–869, doi:10.3762/bjnano.9.80

Graphical Abstract
  • source under the conditions described in the Experimental section (see below). A typical atomic force microscopy (AFM) image with soft-landed Cu NPs on PS is shown in Figure 1a. Apart of a few higher bumps due to stacking of particles on top of each other, one can see an even height distribution because
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • a reference silver layer. The quantified carbon background of ca. 15 atom % was subtracted to determine the actual deposit composition. The topography of the deposits was monitored using atomic force microscopy (AFM) with an AIST Smart SPM system. Data processing was carried out using the free
PDF
Album
Letter
Published 08 Mar 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • ) experiments [34]. The average grain size of the obtained titanium dioxide was found to be about 170 nm based on XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM) results [34]. In this paper we investigated selected physical parameters of TiO2 such as surface area and porosity. To
PDF
Album
Full Research Paper
Published 26 Feb 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • , France Department of Physics and Astronomy, University of Turku, FIN-20014 Turku, Finland 10.3762/bjnano.9.61 Abstract Adhesion forces between functionalized gold colloidal nanoparticles (Au NPs) and scanning probe microscope silicon tips were experimentally investigated by atomic force microscopy (AFM
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics

  • Furqan Almyahi,
  • Thomas R. Andersen,
  • Nathan A. Cooling,
  • Natalie P. Holmes,
  • Matthew J. Griffith,
  • Krishna Feron,
  • Xiaojing Zhou,
  • Warwick J. Belcher and
  • Paul C. Dastoor

Beilstein J. Nanotechnol. 2018, 9, 649–659, doi:10.3762/bjnano.9.60

Graphical Abstract
  • concentration on the aqueous solar nanoparticle (ASNP) inks was investigated by monitoring the surface morphology/topography of the ASNP films using atomic force microscopy (AFM) and scanning electron microscopy (SEM) and photovoltaic device performance as a function of ultrafiltration (decreasing SDS content
  • reached was 64 and 50 mN m−1 for the centrifugal and the crossflow purifications, respectively. Influence of free-SDS surfactant on the surface morphology/topography of ASNP films Optical microscopy and atomic force microscopy (AFM) were conducted for ASNP films with low, medium and high dilution factors
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert,
  • Michael R. P. Ragazzon and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2018, 9, 490–498, doi:10.3762/bjnano.9.47

Graphical Abstract
  • demonstrating high tracking bandwidths, strong off-mode rejection and minor sensitivity to cross-coupling effects. Additionally, a five-frequency system operating at 3.5 MHz is implemented for higher harmonic amplitude and phase imaging up to 1 MHz. Keywords: atomic force microscopy (AFM); demodulation
  • ; digital signal processing; field-programmable gate array (FPGA); high-speed; Lyapunov filter; multifrequency; Introduction Atomic force microscopy (AFM) [1] has been integral in the field of nanoscale engineering since its invention in 1986 by Binnig et al. By sensing microcantilever tip–sample
PDF
Album
Full Research Paper
Published 08 Feb 2018

Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

  • Sujit Kumar Dora,
  • Kerstin Koch,
  • Wilhelm Barthlott and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2018, 9, 468–481, doi:10.3762/bjnano.9.45

Graphical Abstract
  • taken in account to understand how different factors affecting self-assembly of these tubules on HOPG. Koch et al. [21] demonstrated that self-assembly of nonacosan-10-ol tubules resulted in an upright orientation of tubules on HOPG. By employing tapping mode atomic force microscopy (AFM), they observed
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018
Other Beilstein-Institut Open Science Activities