Search results

Search for "chemical stability" in Full Text gives 178 result(s) in Beilstein Journal of Nanotechnology.

Liquid-phase exfoliated graphene: functionalization, characterization, and applications

  • Mildred Quintana,
  • Jesús Iván Tapia and
  • Maurizio Prato

Beilstein J. Nanotechnol. 2014, 5, 2328–2338, doi:10.3762/bjnano.5.242

Graphical Abstract
  • from that of a semimetal to an insulating material, while its chemical stability is considerably reduced. As an alternative, charged species can be used to induce the exfoliation of graphite. For example, the addition of electrons from alkali metal intercalation compounds resulted in the spontaneous
PDF
Album
Review
Published 04 Dec 2014

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • strength (due to C–C sp2 bonds, which is one of the strongest bonds), flexibility without breakage or damage, high elasticity, good electrical conductivity, and chemical stability. These cylindrical graphene nanotubes are considered one of the most attractive nanomaterials. Applicability of CNTs in the
PDF
Album
Full Research Paper
Published 02 Dec 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • nanotube lattice is held together by strong sp2 C–C bonds, which provide the necessary chemical stability to the carbon nanotube. The sensitivity of SWNTs towards NO2 at ambient temperatures, as reported by Kong et al. [7] is particularly interesting. NO2 is a well-known toxic gas and air pollutant and
PDF
Album
Review
Published 20 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • ]. Results of this work confirm that semi-regular Au NP arrays produced by short-pulse laser irradiation of thin metal films represent cost-effective and relatively unexplored fabrication route for nanomaterials of the required structural and chemical stability, which is of crucial importance for industrial
PDF
Album
Review
Published 13 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • chemical stability favors the use of various functionalization schemes to improve the specificity and selectivity during sensing [14][15]. For instance, SWCNTs used in a field-effect transistor (FET) configuration are capable of electronically detecting nucleic acids because of their ability to respond to
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • the most important biological applications of these nanomaterials. CNTs: The previously mentioned large surface area and their excellent chemical stability confers CNTs the ability to conjugate and absorb several therapeutic molecules, paving the way for using them as drug- and gene-delivery systems
  • because its nanostructure and its chemical stability render it a good candidate for favouring cell adhesion. In one of the first studies, Li and co-workers [138] studied the biocompatibility of graphene and the contingent changes in the expression of the protein GAP43, which is associated with the growth
PDF
Album
Correction
Review
Published 23 Oct 2014

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
PDF
Album
Review
Published 29 Aug 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • wires as building blocks for microelectronics requires good chemical stability, especially the stability against oxidation under ambient conditions. For most metallic microstructures, however, stability against oxidation is a challenge. The reason is that reducing the length scale means increasing the
PDF
Album
Full Research Paper
Published 15 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014

Characterization and photocatalytic study of tantalum oxide nanoparticles prepared by the hydrolysis of tantalum oxo-ethoxide Ta83-O)2(μ-O)8(μ-OEt)6(OEt)14

  • Subia Ambreen,
  • N D Pandey,
  • Peter Mayer and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2014, 5, 1082–1090, doi:10.3762/bjnano.5.121

Graphical Abstract
  • to its distinct properties such as large ion diffusion coefficient and high electrochromic reversibility, high dielectric constant, high refractive index, high chemical stability, large band gap [13][14][15] and photocatalytic activity for overall water decomposition and organic pollutant degradation
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • : visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more
  • solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Finally, we highlight the heterostructure design at a precise nanoscale control, such as materials of same composition but different phases and/or from heterojunction
PDF
Album
Review
Published 09 Jul 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • core/shell structured QDs showed high QYs, outstanding physical and chemical stability, this strongly enhanced QY could be attributed to the wide band gap ZnS shell providing surface trap states that enhance the photostability. Photostability test Photobleaching is an effective method for improving the
PDF
Album
Full Research Paper
Published 27 Jun 2014

Gas sensing with gold-decorated vertically aligned carbon nanotubes

  • Prasantha R. Mudimela,
  • Mattia Scardamaglia,
  • Oriol González-León,
  • Nicolas Reckinger,
  • Rony Snyders,
  • Eduard Llobet,
  • Carla Bittencourt and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2014, 5, 910–918, doi:10.3762/bjnano.5.104

Graphical Abstract
  • very large surface area to volume ratio, high electron mobility, physico-chemical stability and high adsorption capability [2][3][4][5]. The use of CNTs as gas sensors was first proposed by Kong et al., who showed that a dramatic change in the electrical resistance of an individual single-walled
PDF
Album
Letter
Published 26 Jun 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • photosensitizer Carbon nanostructures as one of the important building blocks has been used in many research fields due to its unique properties such as good conductivity, chemical stability and high surface area. Carbon nanotube is a particular carbon nanostructure and displays a variety of unique properties
PDF
Album
Review
Published 23 May 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • physical and chemical stability, non-toxicity and low cost [11][12][13][14][15][16]. However, ZnO nanostructures suffer from drawbacks such as a high electron–hole recombination rate and the inefficient utilization of sun light, which limit their photocatalytic activity [17][18]. Several attempts have been
PDF
Album
Full Research Paper
Published 15 May 2014

Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

  • Wolfgang M. Samhaber and
  • Minh Tan Nguyen

Beilstein J. Nanotechnol. 2014, 5, 476–484, doi:10.3762/bjnano.5.55

Graphical Abstract
  • to 270 m3 of wastewater has to be treated prior to the release into the environment [1]. Conventional biological treatment plants are not effective in the removal of colour dye effluents, because of the aromatic structure of the large dye molecules, which provides chemical stability and, thus, also a
PDF
Album
Full Research Paper
Published 15 Apr 2014

Neutral and charged boron-doped fullerenes for CO2 adsorption

  • Suchitra W. de Silva,
  • Aijun Du,
  • Wijitha Senadeera and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 413–418, doi:10.3762/bjnano.5.49

Graphical Abstract
  • and graphene offer excellent thermal and chemical stability as CO2 adsorbents [7][8]. Heterofullerenes are fullerene structures in which one or more cage carbon atoms are substituted by heteroatoms [9]. In addition to the properties mentioned above, which are inherent to carbon-based nanomaterials
PDF
Album
Full Research Paper
Published 07 Apr 2014

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • ], TiO2 has received extensive attention as one of the promising semiconductor photocatalysts, because of its high chemical stability, low cost and non-toxicity [2][3][4][5]. However, it suffers from the wide band gap (3.2–3.4 eV), which restricts the utilization of visible light, and the high
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014

Thermal stability and reduction of iron oxide nanowires at moderate temperatures

  • Annalisa Paolone,
  • Marco Angelucci,
  • Stefania Panero,
  • Maria Grazia Betti and
  • Carlo Mariani

Beilstein J. Nanotechnol. 2014, 5, 323–328, doi:10.3762/bjnano.5.36

Graphical Abstract
  • +) with a high chemical stability, while the mixed chemical state of Fe3O4 (Fe2+/3+) might induce instabilities during its use as electrode material. In the present work, we present a spectroscopic and morphologic characterization of Fe2O3 nanowires (NWs), which were produced by means of a hard template
PDF
Album
Full Research Paper
Published 19 Mar 2014

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

  • Liang Wei,
  • Yongjuan Chen,
  • Jialin Zhao and
  • Zhaohui Li

Beilstein J. Nanotechnol. 2013, 4, 949–955, doi:10.3762/bjnano.4.107

Graphical Abstract
  • different precursors. Previous studies revealed that both polymorphs of ZnIn2S4 are active for photocatalytic hydrogen generation under visible light irradiations and show considerable chemical stability [17][18][19]. However, the photocatalytic hydrogen evolution activity over pure ZnIn2S4 is low, due to
PDF
Album
Full Research Paper
Published 23 Dec 2013

Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM

  • Benedikt Uhl,
  • Florian Buchner,
  • Dorothea Alwast,
  • Nadja Wagner and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 903–918, doi:10.3762/bjnano.4.102

Graphical Abstract
  • ]; ionic liquids; scanning tunnelling microscopy; self-assembly; Introduction In the last 15 years ionic liquids (ILs) have attracted increasing attention due to their special physical and chemical properties such as a low volatility, high chemical stability, low flammability, high intrinsic conductivity
PDF
Album
Full Research Paper
Published 16 Dec 2013

Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells

  • Tatiana K. Zakharchenko,
  • Anna Y. Kozmenkova,
  • Daniil M. Itkis and
  • Eugene A. Goodilin

Beilstein J. Nanotechnol. 2013, 4, 758–762, doi:10.3762/bjnano.4.86

Graphical Abstract
  • alkali-metal–air rechargeable batteries is impossible because of the very limited cycle life, which primarily arises from the low chemical stability of the electrolytes [3] and the carbon positive electrodes [4]. The oyxgen reduction reaction, which occurs in the cathodes during the discharge of the
PDF
Album
Supp Info
Letter
Published 15 Nov 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • polymers are called ionomers (they are a variety of polyelectrolytes). Up to now, the perfluorosulfonic acid (PFSA) polymers, such as Nafion developed by DuPont in the late 1960s are the most successful PEM materials due to their excellent mechanical properties, chemical stability, and high proton
  • conductivity (5 × 10−2 S/cm at 23 °C) [2]. For a long time, Nafion is regarded as a benchmark material in PEFCs due to its excellent combination of conductivity and chemical stability [2][3][4]. Nafion is a copolymer composed of the fluorocarbon backbone with attached side chains terminated with sulfonic
PDF
Album
Full Research Paper
Published 26 Sep 2013

Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2013, 4, 345–351, doi:10.3762/bjnano.4.40

Graphical Abstract
  • zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only. Keywords: Ag-doped TiO2; antimicrobial activity; sol–gel; Introduction The photocatalytic agent TiO2, known for its chemical stability and optical competency, has been used extensively for killing different groups of
  • microorganisms including bacteria, fungi and viruses, because it has high photoreactivity, broad-spectrum antibiosis and chemical stability [1][2][3][4][5][6]. The photocatalytic activity of annealed TiO2 sturdily depends upon its existing phase, i.e., anatase, rutile, brokite. The anatase phase shows an
PDF
Album
Correction
Full Research Paper
Published 06 Jun 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • of the humidity on the coefficient of friction was found to be insignificant. Because of their high aspect ratio and high chemical stability, carbon nanotubes can also find practical applications as electron-field emitters in flat-panel displays [81][82]. The major inconvenience is the weak field
PDF
Album
Review
Published 22 Feb 2013
Other Beilstein-Institut Open Science Activities