Search results

Search for "drift" in Full Text gives 202 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • scanner, the stability of the large-area scanner has to be high. The positioning accuracy can be tested during AFM scanning. If scanned with the open-loop scanner, also the stability and drift of the large-area scanner is of interest. In Figure 2a, a scan of polymeric microlenses is shown when using the
  • error was extracted. The data shows no drift of the stage during the whole experiment and only small fluctuations around the desired position of ±10 nm, which is a low value for a scan stage that has a maximum travel distance of 800 μm. As the large-area scanner is mechanically stable, it can be used to
  • very low thermal drift of the setup, no further image processing was necessary. The choice of color table allows for a clear distinction of the different layers of which the circuit is comprised. This shows that also the height scale measured by the AFM is constant over the whole large scan area, a key
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Carrier multiplication in silicon nanocrystals: ab initio results

  • Ivan Marri,
  • Marco Govoni and
  • Stefano Ossicini

Beilstein J. Nanotechnol. 2015, 6, 343–352, doi:10.3762/bjnano.6.33

Graphical Abstract
  • , some changes emerge in the plot of the CM lifetimes (Figure 3a). As a result of the improved NC–NC interaction, we observe the drift of some points toward reduced lifetimes. Such changes essentially concern the portion of the plot delimited by the energies and (i.e., the CM energy threshold of the
PDF
Album
Full Research Paper
Published 02 Feb 2015

The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots

  • Vladimir V. Breus,
  • Anna Pietuch,
  • Marco Tarantola,
  • Thomas Basché and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 281–292, doi:10.3762/bjnano.6.26

Graphical Abstract
  • previously attributed to the detaching and reattaching of kinesin molecules to microtubules [38]. We also observe back-and-forth motion along the same trajectories with similar velocities for both directions, implying that the QDs did not drift back during those phases, but were actively pulled (Figure 6a–c
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • changes in probe–sample geometry due to drift in the probe–sample separation during the measurement. These results validate the implementation of KPFM in decane [39]. Since the decane acts like a near-perfect lossless dielectric between probe and sample, the dynamic response is purely capacitive and can
  • long range and that any changes in separation due to drift were small compared to the tip–sample distance. Measurements in Figures 1–3 were performed using a multifrequency lock in amplifier (Zurich Instruments, HF2LI) having a built in electronic adder and Figures 4–7 were performed using two lock-in
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Advanced atomic force microscopy techniques II

  • Thilo Glatzel,
  • Ricardo Garcia and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 2326–2327, doi:10.3762/bjnano.5.241

Graphical Abstract
  • with real parameters [22]. Furthermore, technical contributions discuss the impact of thermal frequency drift of quartz-based force sensors at low temperatures to the accuracy of the force measurements [23] and the trade-offs in sensitivity and sampling depth in bimodal and trimodal AFM [24]. The
PDF
Editorial
Published 03 Dec 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon
  • charges and dipoles on the nanotube carrier transport, which constitutes the major challenge for the stability, resolution and drift of these sensors, is discussed. The list of cited works is by no means exhaustive, but we attempt to highlight the pioneering reports showing relevant information to
  • -directional gate sweep is performed, it is often observed that the forward and reverse sweeps are not concurrent, and the measured effect can often be over 50% of the gate sweep range. For gas sensors, this effect can be problematic due to the instability of the device current that arises from the drift and
PDF
Album
Review
Published 20 Nov 2014

Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

  • Stanislav S. Borysov,
  • Daniel Forchheimer and
  • David B. Haviland

Beilstein J. Nanotechnol. 2014, 5, 1899–1904, doi:10.3762/bjnano.5.200

Graphical Abstract
  • using a multimodal drive that avoids issues related to the thermal drift [30] and exploits nonlinearities for higher calibration precision. Results and Discussion Cantilever model We consider a point-mass approximation of a cantilever derived from the eigenmode decomposition of its continuum mechanical
PDF
Album
Full Research Paper
Published 29 Oct 2014

Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor

  • Anna Pohl and
  • Ingrid M. Weiss

Beilstein J. Nanotechnol. 2014, 5, 1823–1835, doi:10.3762/bjnano.5.193

Graphical Abstract
  • , dependant on the different calcium carbonate concentrations. The 140 µmol/L solution reaches 0.44°, whereas the 17.5 µmol/L solution achieves the lowest maximum phase value with only 0.05°. The baseline noise, according to the manufacturer of the instrument, is <0.05° phase (RMS), the baseline drift
  • µmol/L reaches the same range as the 17.5 µmol/L (Figure 1D). The relatively high amplitude signal corresponding to 35 µmol/L indicates additional drift effects. In summary, it can be concluded that the temporary interaction with the sensor chip is concentration dependent. A minimum concentration of 35
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • ribbon-like fractionation channel in which the sample is transported by the carrier liquid that generates a lamellar flow profile. This axial flow is superposed by a homogeneous drainage of the carrier liquid at one channel border, which induces a drift of the sample towards the accumulation membrane
  • where slow axial flow velocities are present. Retention will occur according to the average distance of the sample to the accumulation wall, which is determined by the cross flow induced drift and the size-dependent diffusion coefficient of the particles. Thus, particles separate according to their
PDF
Album
Full Research Paper
Published 15 Oct 2014

Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum

  • Francesco G. Offeddu,
  • Jordi Cama,
  • Josep M. Soler and
  • Christine V. Putnis

Beilstein J. Nanotechnol. 2014, 5, 1245–1253, doi:10.3762/bjnano.5.138

Graphical Abstract
  • during the solution saturation state drift. This implies a change in Gibbs energy along the experimental runs. As pointed out by Stipps et al. and de Leeuw et al. [48][49] the observed distortion of the etch pit shape (Figure 3b and Figure 3c) likely corresponds to an increase in the difference of
  • as long as Ca2+ was being released. AFM deflection images of calcite cleavage surfaces. Top row: a) image in air shows the initial flat surface with a topographic variation that ranges over 2 nm. The white line across the image corresponds to a terrace; b) same surface region with some drift after
PDF
Album
Full Research Paper
Published 11 Aug 2014

Highly NO2 sensitive caesium doped graphene oxide conductometric sensors

  • Carlo Piloto,
  • Marco Notarianni,
  • Mahnaz Shafiei,
  • Elena Taran,
  • Dilini Galpaya,
  • Cheng Yan and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 1073–1081, doi:10.3762/bjnano.5.120

Graphical Abstract
  • temperature regulated, HEPA (High-Efficiency Particulate Absorption) filtered air through the Cypher enclosure. Closed-loop temperature control isolates the AFM from room temperature variations, minimizing thermal drift for imaging. During measurements the temperature was kept constant at 26 °C. For all KPFM
  • exhibits a good repeatability, even if a slight drift in the baseline is observed. This may be due to the presence of gas molecules not yet desorbed from the sensor surface. An average time of 540 s is needed to recover after 240 s exposure to 0.732 ppm of NO2. Conclusion We successfully fabricated and
PDF
Album
Full Research Paper
Published 17 Jul 2014

Double layer effects in a model of proton discharge on charged electrodes

  • Johannes Wiebe and
  • Eckhard Spohr

Beilstein J. Nanotechnol. 2014, 5, 973–982, doi:10.3762/bjnano.5.111

Graphical Abstract
  • approximately linear slope in the time interval between about 30 and about 60 ps. This behavior is indicative of the drift regime characteristic for a charged ion migrating in a homogeneous electric field. Thus, proton motion in this regime is dominated by the mean electric field (which can be calculated, e.g
PDF
Album
Full Research Paper
Published 07 Jul 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • spectra are due to carbon-coated copper grid. The drift corrected EDX line profile was used to obtain the spatial distributions of the atomic contents across the Ag–ZnO nanostructures. Figure 4d shows the EDX profiles for Zn, O and Ag across the line marked in Figure 4c. Figure 5 show the elemental
PDF
Album
Full Research Paper
Published 15 May 2014

Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures

  • Florian Pielmeier,
  • Daniel Meuer,
  • Daniel Schmid,
  • Christoph Strunk and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2014, 5, 407–412, doi:10.3762/bjnano.5.48

Graphical Abstract
  • detector noise. Keywords: AFM; frequency drift; length extensional resonator; needle sensor; qPlus sensor; quartz; Findings Frequency modulation atomic force microscopy [1] has become an essential tool for surface scientist‘s to study chemical and magnetic interactions at the atomic scale [2][3][4][5][6
  • contributions are significantly reduced and imaging with millihertz resolution becomes possible [12]. In turn, when B is small the stability of the eigenfrequency f0 is particularly important, because frequency drift noise is proportional to 1/ [7]. The main cause of frequency drift are changes in f0 with
  • temperature T, which are material dependent. Even for experiments conducted at liquid helium temperatures, temperature drift limits the achievable resolution. Changes in ambient pressure affect the boiling temperature of helium, e.g., the vapor pressure of He4 at 4.4 K changes at a rate of ≈105 Pa/K [13
PDF
Album
Letter
Published 04 Apr 2014

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • custom-built atom tracking system developed at the University of Mainz [18] was used to apply feedforward correction to reduce the effect of thermal drift and piezo-electric creep. To obtain the site-specific interaction force, single point Δf(z) spectroscopy measurements were acquired on the adatoms
PDF
Album
Full Research Paper
Published 01 Apr 2014

Control theory for scanning probe microscopy revisited

  • Julian Stirling

Beilstein J. Nanotechnol. 2014, 5, 337–345, doi:10.3762/bjnano.5.38

Graphical Abstract
  • that steady-state errors in SPM feedback result from a sample drift in the z-direction or from scanning a sample with a tilt. Thus, any system that does not model z-drift or sample tilt should not expect a steady-state error. Complete model of SPM feedback Before running simulations of our simplified
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • measurement was about 5 3/4 h, the lateral drift of ≈40 pm/h led to a distortion of the originally rectangular surface area. In addition, a continuous drift of the frequency shift reference point of the order of 0.1 Hz/h was observed. The precise drift as a function of time was determined by a comparison of
  • analysis: see below in Figure 3 and Figure 4). The lateral drift was corrected in the images resulting in a distortion of the originally rectangular surface area. The images were linearly interpolated with a factor of 4 to enhance the visibility. Intramolecular structures can be seen in both the raw data
PDF
Album
Full Research Paper
Published 27 Jan 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • propagation from sensor displacement noise to the Kelvin voltage output. Giessibl et al. [9] compared qPlus and length-extension resonator (LER) sensors with respect to four noise sources: thermal excitation, sensor displacement noise, oscillator noise and thermal drift noise. The impact of all noise sources
PDF
Album
Full Research Paper
Published 02 Jan 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • by a linearized sensor. However, thermal drift and piezo creep can also contribute to the apparent displacement, thus they must be minimized and/or measured and corrected for. This can present a challenge, particularly in AFM, which largely relies on piezoelectric motion transducers. It should be
  • noted that a z-sensor, which is used to linearize the z-motion, cannot distinguish between creep and thermal drift. In light of this discussion, additional differences between AFM and INI can be added to those mentioned above: the time resolution of the measurement, which is related to the inertia of
  • the system, and the drift/creep characteristics. These are noted in Table 1 as bandwidth and temporal stability. For a given creep time t, the corresponding displacement into the surface h(t) is measured experimentally. The creep behavior can then be modeled following [79] and [80]: with hI being the
PDF
Album
Review
Published 29 Nov 2013

Simulation of electron transport during electron-beam-induced deposition of nanostructures

  • Francesc Salvat-Pujol,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2013, 4, 781–792, doi:10.3762/bjnano.4.89

Graphical Abstract
  • intervals of these parameters). This can be best observed in the case of the sample with thickness dWCO = 200 nm for z = 50–150 nm. In practice, sample charging effects in the EBID process cause only a minor repulsion of the electron beam (observed as a slight drift in the monitoring images), which can be
PDF
Album
Full Research Paper
Published 22 Nov 2013

Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification

  • M. Temmen,
  • O. Ochedowski,
  • B. Kleine Bussmann,
  • M. Schleberger,
  • M. Reichling and
  • T. R. J. Bollmann

Beilstein J. Nanotechnol. 2013, 4, 625–631, doi:10.3762/bjnano.4.69

Graphical Abstract
  • prior to measurements. All images in this paper are presented without filtering or smoothing. The topographic images are compensated for piezo creep and drift as well as for scanner bow using common plane subtraction and (facet) leveling algorithms of the Gwyddion software package [26]. Results and
PDF
Album
Full Research Paper
Published 07 Oct 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • processes in a system where low energy barriers are effectively washed out by zero-point motion. Because the initial configuration for the QMD simulations of the nanochannel was taken from the classical MD trajectory, it was important to check the stability of the model channel. No strong drift of the
PDF
Album
Full Research Paper
Published 26 Sep 2013

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • extremely small [16][17]. This makes the microscope highly suited for obtaining high-resolution images of the surface topography. An image can further be recorded by simultaneous collection of the backscattered He with a microchannel plate [18]. The microscope is also equipped with a silicon drift detector
PDF
Album
Full Research Paper
Published 24 Jul 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • governed mainly by diffusion and not by drift current (electric field). Preferential trapping of electrons (holes) in defect states of the TiO2 network leads to different diffusion coefficients for electrons and holes. Surface photovoltage under sub-bandgap illumination Figure 6a shows a semilogarithmic
PDF
Album
Full Research Paper
Published 01 Jul 2013

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • -average detector signals in vertical and horizontal channels during a tapping-mode AFM experiment. To minimize contributions of drift in quasi-static deflection signals, we previously developed a procedure that takes advantage of the transitions between attractive and repulsive modes [36]. The calibrated
PDF
Album
Full Research Paper
Published 05 Apr 2013
Other Beilstein-Institut Open Science Activities