Search results

Search for "etching" in Full Text gives 351 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • . The templates used were nanoporous polycarbonate membranes with a thickness of 30 µm, a density of 109 pores·cm−1 and a pore diameter of 130 nm. Chemical etching of the pores was performed by immersing the irradiated polycarbonate foils in an aqueous solution of 5 M NaOH and 10 vol % methanol at a
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • increasing molecular weight, the interfacial area per block junction increases, inducing parallel folding (the most thermodynamically stable form) [87]. The removal of the sacrificial component (SC) to obtain the final polymeric porous material can be performed using various etching procedures, such as
  • case, the selective etching of activated oxygen molecules generated by the VUV radiation towards the two blocks (PS and PMMA) allowed for the preferential decomposition of PMMA and the consequent formation of a PS nanoporous network. The modulation of the irradiation time and pressure caused chemical
  • PS-b-PEO copolymers, Mao et al. [59] demonstrated that the chemical etching of the minority component leads to the formation of a well-ordered nanoporous system by selective removal of the PEO domains by simple ether cleavage by washing with aqueous hydrogen iodine. This strong acid was selected for
PDF
Album
Review
Published 29 Aug 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • into solar cells [1][2][3][4][5]. The use of different techniques for the wet and dry etching of Si wafers [6] in combination with thermal or UV nanoimprint lithography [6][7] has opened new potential for design of (nano)textures with superior antireflection, light scattering and trapping properties
  • textures that are commonly applied in HJ Si solar cells. The first one can be experimentally realized on the nanometer scale by UV nanoimprint lithography (NIL) in combination with dry and wet etching of the wafer [6]. The second, the random pyramid texture, is typically used as a microtexture in c-Si
  • solar cells and can be obtained by wet etching with KOH [36]. In Figure 4 simulated top views and cross-sectional profiles of the two textures are presented, in this case applied to the front part of the analyzed solar cell. The corresponding front thin layers are indicated by different colors. In
PDF
Album
Full Research Paper
Published 28 Aug 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • patterns are transferred on the resist with a second lithography step. Two non-selective etching processes are then performed: a first CHF3-mediated reactive ion etching (RIE) removes the 3 nm SiOx layer which is no longer needed, while the second inductively coupled plasma RIE with SiCl4/Ar gas treatment
PDF
Album
Full Research Paper
Published 27 Aug 2018

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

  • Lukáš Ondič,
  • Marian Varga,
  • Ivan Pelant,
  • Alexander Kromka,
  • Karel Hruška and
  • Robert G. Elliman

Beilstein J. Nanotechnol. 2018, 9, 2287–2296, doi:10.3762/bjnano.9.213

Graphical Abstract
  • with etching [14] or focused ion beam milling [15] are used to prepare photonic structures with well-defined dimensions on small areas. These approaches are therefore suitable for laboratory testings but not for practice. This issue was recently solved by developing large-scale production techniques
  • ” by electron beam lithography (“e-LiNE system”, Raith GmbH, Germany) into a polymer mask forming a 2D periodic patterns of holes. A 60 nm thick gold layer was subsequently evaporated and part of the gold was removed by lift-off of the PMMA to define a mask for etching. Afterwards, the samples were
  • always six PhCs) was etched for a given time. Depending on the sample, the heights of the columns after the etching were (i) hPhC1 ≈ 150 nm, (ii) hPhC2 ≈ 380 nm and (iii) hPhC3 ≈ 500 nm. The heights of the columns within each series of the PhC samples varies slightly (±15 nm) due to differences in the
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • for 1 h. A 4.5 nm thick Si3N4 spacer layer served to suppress excited electrons from the Si wafer to interfere with electrons from the Si-NWell during UPS. Samples comprising a SiO2-embedded NWell were processed by etching the top c-Si layer of an Si-on-insulator (SOI) wafer with 200 nm buried SiO2
  • (BOX) down to ca. 3 nm. The subsequent oxidation resulted in a 1.7 nm Si-NWell and 1.5 nm SiO2 capping. Si reference samples were processed by etching a 5 to 15 × 10−3 Ω cm Sb-doped n-type (111)-Si wafer in buffered hydrofluoric acid, and the sample was immediately mounted under a N2-shower then
  • swiftly loaded into the ultrahigh vacuum (UHV) annealing chamber. All NWell samples were contacted via a lateral metal contact frame on the front surface which was processed by photolithographical structuring, wet-chemical mesa etching and thermal evaporation of Al. The reference Si-wafer was contacted
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Optimization of the optical coupling in nanowire-based integrated photonic platforms by FDTD simulation

  • Nan Guan,
  • Andrey Babichev,
  • Martin Foldyna,
  • Dmitry Denisov,
  • François H. Julien and
  • Maria Tchernycheva

Beilstein J. Nanotechnol. 2018, 9, 2248–2254, doi:10.3762/bjnano.9.209

Graphical Abstract
  • etching after the metallic contact deposition without any damage of the device, and the SiNx waveguide can be fabricated after this etching step. Taking into account that the Si substrate is strongly absorbing at 400 nm, a simulation with different thicknesses of the SiO2 layer was done to evaluate the
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • fabrication strategy for synthesis of SnO2 NFs with a branch-on-stem morphology using electrospinning, oxygen plasma etching, sputtering and annealing. Electrospun PVP NFs were first etched with oxygen plasma to make a hierarchical template. Afterwards, a SnO2 film is deposited by sputtering and the PVP
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • community. Planar, fully depleted SOI (FD-SOI) has been used to provide a more cost-effective scaling mechanism than FinFET alternatives. Although initial wafer cost is higher for SOI compared to bulk silicon, which is used in finFETs, the further masking and etching required for fin production is both
  • SOI samples were prepared and MLD-doped through the methods outlined in the Experimental section. ECV was not applicable to analyse active carrier concentrations present in these samples due to their inability to etch. When etching n-type doped semiconductors, ECV requires the application of a voltage
  • to draw holes to the surface and enable the dissolution of the semiconductor into the electrolyte. Applying this voltage near the insulator layer becomes problematic and prevents etching and analysis in this region. Hall effect measurements were instead used, which required careful handling during
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • density distribution of the photogenerated carriers within the silicon nanostructures. Results and Discussion Fabrication of silicon nanostructures and calculation of their optical modes Silicon nanostructures were fabricated by etching a p-type silicon substrate using a combination of Cl2 and HBr/O2
  • forward power 40 W, 7 mTorr) was used for removal of the native oxide and then HBr/O2 (5 min for nanocones and 11 min for nanowires and inverted nanocones, HF forward power 30 W, 7 mTorr) was used for etching the silicon to the desired structures. Before the etching steps an oxygen cleaning step was used
  • (1 min and 30 sec, 50 sccm O2, HF forward power 60 W, ICP forward power 100 W, 6 mTorr). The temperature used for all the steps of the plasma etching was 20 °C. The ratio of HBr/O2 was very crucial for the control of the shape of the silicon structures. For the nanocones a ratio of 48.2:1.8 sccm (HBr
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • alternative FZP fabrication techniques gained some attraction thanks to the improvements in layer deposition [15][16][17][18][19][20][21][22][23][24][25], etching methods [26], and fabrication methods based on focused ion beams [18][21][27][28][29][30][31]. One particular implementation of focused ion beams
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy

  • Emre Gürdal,
  • Simon Dickreuter,
  • Fatima Noureddine,
  • Pascal Bieschke,
  • Dieter P. Kern and
  • Monika Fleischer

Beilstein J. Nanotechnol. 2018, 9, 1977–1985, doi:10.3762/bjnano.9.188

Graphical Abstract
  • , different techniques such as reactive ion etching, thermal evaporation and atomic layer deposition can be used in combination with BCML [13][14][15]. Here it is important to choose the optimum chain length of the diblock copolymers for obtaining the desired inter-particle spacing [16][17]. It is thus
  • ) chloride (KAuCl4, 0.1 wt %, Sigma-Aldrich), to grow the gold precursor particles with the electroless deposition process. Reactive ion etching (Oxford Plasmalab 80 Plus) was used to remove the polymer with an oxygen plasma treatment with the following settings: process pressure 100 mTorr, power 100 W
  • , temperature 20 °C and duration of the etching process 60 s. To measure the inter-particle spacing and sizes of the gold nanoparticles in this work we used a Scanning Electron Microscope (SEM) (Hitachi SU 8030). Darkfield spectroscopy The scattering spectra of gold nanoparticles were measured with a custom
PDF
Album
Full Research Paper
Published 12 Jul 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • . The thickness of the nanowire and electrodes is 50 nm, including a 5 nm Ti adhesion layer. The third step is the dry etching of the TiO2 layer. For that, we first create an etching mask by electron-beam lithography, thermal deposition of a 30 nm thick nickel layer and lift-off. Reactive ion etching is
  • then used to remove the TiO2 layer and to define the waveguides. More details about this etching process can be found in [62]. A last optical lithography step is carried out to define the macroscopic leads that are connected to the microscopic electrodes. The process is subsequently terminated by
PDF
Album
Full Research Paper
Published 11 Jul 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • [36] and their etching [37], as well as the imaging of SWCNTs [38]. After the development of a compact mass spectrometer for this instrument [39][40], the detection and imaging of sputtered ions can also be used for process control [41], including carbon-containing materials [42][43]. Whereas in
  • -beam etching and takes changes in ion current during long-time irradiation into account. The scan mode with spot overlap was used for ion beam positioning, leading to a homogeneous irradiation of the sample. The experimental conditions are given in Table 2. Raman spectra Raman scattering measurements
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

A differential Hall effect measurement method with sub-nanometre resolution for active dopant concentration profiling in ultrathin doped Si1−xGex and Si layers

  • Richard Daubriac,
  • Emmanuel Scheid,
  • Hiba Rizk,
  • Richard Monflier,
  • Sylvain Joblot,
  • Rémi Beneyton,
  • Pablo Acosta Alba,
  • Sébastien Kerdilès and
  • Filadelfo Cristiano

Beilstein J. Nanotechnol. 2018, 9, 1926–1939, doi:10.3762/bjnano.9.184

Graphical Abstract
  • most challenging process, we show the reliability of the SC1 chemical solution (NH4OH/H2O2/H2O) with its slow etch rate, stoichiometry conservation and low roughness generation. The reliability of a complete DHE procedure, with an etching step as small as 0.5 nm, is demonstrated on a dedicated 20 nm
  • , differential Hall effect (DHE) profiling [17][18] can potentially meet all the requirements related to the precise measurement of dopant activation at the semiconductor surface. DHE relies on the iteration of etching process and conventional Hall effect measurements. The active carrier profile is therefore
  • nanometric resolution has been successfully demonstrated for Si and Ge, applying oxidation processes such as anodisation [19] or oxidising chemistry [20][21][22][23]. Nevertheless, etching SiGe alloys with nanometric resolution is far more challenging considering that Si and Ge have different oxidation rates
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • . Mesoporous carbon nanoplates are observed after removing Co nanoparticles by HCl etching (Figure 2D). A series of hexagonal NPLs prepared with different DA concentrations and carbonization temperatures are shown in Figure S2, Supporting Information File 1. PDA layers become more noticeable with the
  • , respectively; (f) LDO (Co3O4 and CoAl2O4 mixture). SEM images of: (A) pure CoAl LDH; (B) LDH@PDA-2.5 composite; (C) NPLs-2.5-800, the inset shows a high-magnification SEM image; (D) NPLs-S prepared by removal of Co nanoparticles embedded in NPLs-2.5-800 with HCl etching. (A–C) TEM images of the hexagonal
  • different initial RhB concentrations of: (a) 35, (b) 25, and (c) 15 mg/L. The concentration of adsorbents is 0.2 g/L. (B) Adsorption isotherms of the hexagonal NPLs-2.5-800 sample at 25 °C (a) before (with Co nanoparticles) and (b) after (Co nanoparticles removed) HCl etching. Recyclability of the NPLs
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • deposited on SiO2 by sulfurization. The quality of the obtained NSs was analyzed by scanning electron and transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The as-grown NSs were then successfully transferred to the substrates using a wet chemical etching method. The
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide

  • Yi-Ru Huang,
  • Yao-Ching Chiu,
  • Kuan-Chieh Huang,
  • Shao-Ying Ting,
  • Po-Jui Chiang,
  • Chih-Ming Lai,
  • Chun-Ping Jen,
  • Snow H. Tseng and
  • Hsiang-Chen Wang

Beilstein J. Nanotechnol. 2018, 9, 1602–1612, doi:10.3762/bjnano.9.152

Graphical Abstract
  • with Ga-doped zinc oxide (GZO)/GaN as the base layer and then reducing the total reflectivity by changing the shape, thickness, and density of the microstructure through dry etching [12]. Li et al. increased the LEE of an InGaN-monolayer quantum-well LED by 1.8–1.9 times relative to that of a
  • dislocations in the LED structure were blocked, thus enhancing the general luminous efficiency by approximately 23% [15]. Cates et al. adopted laser etching to produce a repeated microstructure on the emitting surface of a yttrium aluminum perovskite scintillation crystal activated by cerium (formula YAlO3:Ce
  • evident in Figure 2b. Figure 2h shows pores that have been etched excessively. Excessive etching destroys the surface structure. Figure 2e shows pores that have been completely etched. These results are consistent with the SEM measurements. We measured the line-scan profile of the AFM images to determine
PDF
Album
Full Research Paper
Published 30 May 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • . Successively, reactive ion etching was used to selectively remove the portion of the gold film not protected by the nanospheres. The etch rate (2.9 nm/min) was estimated measuring the thickness of the gold film for different etching times. Finally, the nanosphere residues were removed by oxygen plasma
  • and nanoholes of different sizes and materials were realized. Figure 4a,b shows gold nanodisks of 500 nm still covered by the nanosphere portion remaining after the etching process, while in Figure 4c,d images of the final disks of different diameters are reported. Gold and cobalt nanoholes realized
PDF
Album
Full Research Paper
Published 29 May 2018

Evaluation of replicas manufactured in a 3D-printed nanoimprint unit

  • Manuel Caño-García,
  • Morten A. Geday,
  • Manuel Gil-Valverde,
  • Xabier Quintana and
  • José M. Otón

Beilstein J. Nanotechnol. 2018, 9, 1573–1581, doi:10.3762/bjnano.9.149

Graphical Abstract
  • UV-curable molds. In either case, the samples can be used as such, or undergo further processes such as chemical etching [6] or electric-field-assisted steps [7]. In recent months, we have developed a NIL system [8] using free software and public hardware designs created in a simple 3D printer. The
PDF
Album
Full Research Paper
Published 28 May 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • surface features as observed by SEM, providing evidence that both methods can be applied complementary. The same pores as those observed via SEM can be found in the AFM topography image and the topography reveals some preferential etching at the grain boundaries and interfaces. Differentiation between the
  • individual grains can hardly be seen in the topography image (Figure 4c), using the same color scale as in Figure 2. This means, preparation with the ion beam almost parallel to the surface introduces less preferential etching of the grain boundaries. However, the ESM amplitude signal, as shown in Figure 4d
PDF
Album
Full Research Paper
Published 28 May 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • laser onto a gold tip. A schematic of the experimental setup can be found elsewhere [37]. The elastically backscattered signal detected by a PMT was studied here. To obtain a tip with a radius down to 10 nm and low surface roughness, the gold tips were fabricated by electrochemical etching. A 100 µm
PDF
Album
Full Research Paper
Published 23 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • for efficient photocatalytic Cr(VI) reduction [134]. They prepared the photocatalyst using a direct-wrapped route followed by hydrothermal etching. The high charge separation efficiency and redox ability are due to the synergetic effect of formation of a Z scheme photocatalytic process and its
PDF
Album
Review
Published 16 May 2018

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • obtained. Five samples were prepared in total. For samples 1, 2, and 3 the etching of the barrier layer was carried out by immersing the entire membrane in a 4% aqueous solution of phosphoric acid (H3PO4) at 35 ± 2 °C for 15, 20 and 35 minutes, respectively. For the as-produced samples of type I and type
  • pore sizes and oxide thickness using various etching technologies of the barrier layer at the bottom of the pores (Table 1). In Figure 2 the option of barrier layer etching on both sides (bilateral etching) by immersion of all free membrane in solution (sample No. 2) is shown. In the free membrane the
  • various options for barrier layer etching are closely associated with the liquid distribution in the narrow channels (pores) of the PAM. Preliminary results show that a membrane thickness of less than 30 µm is enough to carry out an usual bilateral etching by immersion of the entire membrane into solution
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization

  • Axel Seidenstücker,
  • Stefan Beirle,
  • Fabian Enderle,
  • Paul Ziemann,
  • Othmar Marti and
  • Alfred Plettl

Beilstein J. Nanotechnol. 2018, 9, 1390–1398, doi:10.3762/bjnano.9.131

Graphical Abstract
  • -defined Au nanoparticles (NPs) exhibiting a high degree of hexagonal order as obtained in a first step by a proven micellar approach. These NP arrays serve as masks in a second reactive ion etching (RIE) step optimized for etching Si and some important Si compounds (silicon oxide, silicon nitride) on the
  • approach came from diverse ion-track etching techniques with a limitation in porosity but several ways to form pore shapes [10][11][12]. Alternatively, thin porous nanocrystalline silicon (pnc-Si) membranes have been suggested with pores formed in a nc-silicon film sandwiched between nanometer-thick
  • defined nanopores restricts them to small numbers of pores or specific arrangements, hindering high throughput [21][22]. With this aspect in mind, parallel fabrication techniques, based on self-assembly of polymeric components, become essential in combination with appropriate etching procedures. For this
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2018
Other Beilstein-Institut Open Science Activities