Search results

Search for "phonon" in Full Text gives 185 result(s) in Beilstein Journal of Nanotechnology.

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • 0.3–1.3 eV) and log(fB0) (in the range from 1010 to 1024 Hz). The latter apparent prefactor values exceed typical phonon frequencies (1013 Hz) by more than ten decades. This "compensation law" observed for solid-state phenomena with a large activation energy in many areas (physics, mechanics
PDF
Album
Full Research Paper
Published 26 Feb 2015

Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

  • Alireza Kharazmi,
  • Nastaran Faraji,
  • Roslina Mat Hussin,
  • Elias Saion,
  • W. Mahmood Mat Yunus and
  • Kasra Behzad

Beilstein J. Nanotechnol. 2015, 6, 529–536, doi:10.3762/bjnano.6.55

Graphical Abstract
  • at constant pressure, υ is the phonon velocity and l is the phonon mean free path. Therefore, changes in the phonon mean free path proportionally change the thermal conductivity. Figure 8 shows the typical PA signal as a function of frequency for (a) distilled water and ethylene glycol and (b) ZnS
  • and ZnS–PVA nanofluids are given in Table 2. The value of thermal effusivity decreased upon the increase of the radiation dose, as illustrated in Figure 7b. The decrement of thermal effusivity can be also explained by a decreasing chain length of PVA and, consequently, a shorter phonon mean free path
PDF
Album
Full Research Paper
Published 23 Feb 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • -large) which can display either semiconducting or metallic properties due to the conjugation and electron–phonon coupling effects of their delocalized π electrons. In addition to many examples in organic chemistry, the occurrence of sp-hybridized carbon has been observed in many carbon-based materials
  • powerful tool for the characterization of carbon materials and nanostructures due to its sensitivity to the vibration of C–C bonds. For instance, strong electron–phonon coupling and resonance effects allow for the measurement of single carbon nanostructures and together with confinement effects, provides
  • atom per unit cell, providing one electron from each 2pz orbital, thus forming a half-filled band of a 1D metal. As a consequence of Peierls distortion (driven by electron–phonon coupling and dimerization of the structure), an energy gap opens and the metallic character of cumulenes changes into the
PDF
Album
Review
Published 17 Feb 2015

Carrier multiplication in silicon nanocrystals: ab initio results

  • Ivan Marri,
  • Marco Govoni and
  • Stefano Ossicini

Beilstein J. Nanotechnol. 2015, 6, 343–352, doi:10.3762/bjnano.6.33

Graphical Abstract
  • momentum conservation and by fast phonon relaxation processes, CM is often inefficient in bulk semiconductors. On the nanoscale, CM is favored (a) by quantum confinement that enhances the carrier–carrier Coulomb interaction [7], (b) by the lack of restrictions imposed by the conservation of momentum [8
  • ] and, in some cases, (c) by the so-called “phonon bottleneck” effect [9][10] that reduces the probability of exciton relaxation by phonon emission. These conditions make the formation of multiple e–h pairs after absorption of high energy photons more likely to occur in low-dimensional nanostructures
  • . Consequently, at the nanoscale CM can be as fast as (or faster than) phonon scattering processes and Auger cooling mechanisms [11]. Therefore, CM represents an effective way to minimize energy loss factors and constitutes a possible route for increasing solar cell photocurrent, and hence, to increase solar
PDF
Album
Full Research Paper
Published 02 Feb 2015

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • wavelengths (red–green). Si and Ge are indirect gap materials, requiring phonon scattering for optical absorption/emission to take place. However, Q-size effects present in porous semiconductors can promote optical transitions without the need of phonons by breaking the momentum conservation rules and/or by
  • making the material quasi-direct through the process of Brillouin zone folding [3]. For example, non-phonon processes were shown to dominate in the case of porous Si under strong confinement potential [4][5][6]. In addition, Q-effects in porous semiconductors can be interesting for photovoltaic
  • observed in Ge for the case of strained [11] and doped [12] Ge layers. Furthermore, in addition to its small indirect band gap (≈0.66 eV), Ge exhibits a larger direct band gap (≈0.80 eV) that could promote non-phonon optical transitions if n-type doping of about 1020 cm−3 could be achieved in Ge. Since Ge
PDF
Album
Full Research Paper
Published 30 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • -monochromatic X-ray sources are used, as is often the case. In addition, a finite sample temperature causes thermal broadening due to phonon vibrations, but this is usually negligible compared to the other factors (since the thermal energy is only approx. 25 meV at 300 K). Finally, each peak has a natural
PDF
Album
Review
Published 15 Jan 2015

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980–1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si–Si mode, NW-transverse acoustic (TA), Si–substrate–TO and NW-no-phonon
  • (NP) lines, respectively. From these results the NW TA and TO phonon energies are found to be 15.7 and 57.8 meV, respectively, which agree very well with the values expected for bulk Si1−xGex with x = 0.15, while the measured NW NP energy of 1099 meV would indicate a bulk-like Ge concentration of x
  • were obtained from the other samples. Figure 4 shows that the NW spectral region of interest (from approximately 950 to 1050 meV) is dominated by the boron (≈1017 cm−3)-doped Si substrate phonon-replica spectrum at the lowest temperatures (6 and 10 K). On increasing the sample temperature up to 20 K
PDF
Album
Full Research Paper
Published 30 Dec 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • plausible reasons for the observed behavior are discussed subsequently. Ideally, Δφ should be close to 0, however, in reality, φ could be influenced by contact resistance [35][36], optical/acoustic phonon scattering [33], and trapped charges [37] depending on L and VG, which leads to Δφ ≠ 0, and
  • consequently, K ≠ φ. For short channel lengths, after hybridization, ΔRc also contributed significantly to ΔRon, and the CNT–metal work function is altered, which affects the mobility. Phonon scattering is prominent for all VG and increases with L [38]. The degrading effect of phonon scattering on the mobility
  • and reverse gate voltage sweeps, which is responsible for the hysteresis behavior [39]. These charge traps could participate in Coulombic scattering [40], and thereby influence mobility. If Δφc, Δφs and Δφh represent the influence of contact resistance, phonon scattering, and charge traps respectively
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • local melting (thermal spike) [29] occurs along the ion trajectory due to the energy deposition into the electronic subsystem (within 10−16 s). The local thermalization of the electronic sub-system takes place within 10−14 s. The deposited energy is transferred to the atomic subsystem by electron–phonon
  • ]. The melting point of silicon is ≈1400 K and transient molten zones (giving rise to viscous flow of Pt atoms) in silicon are possible by ion irradiation. Since the temperature spike quenches via electron–phonon coupling within 10−11 s, a very small contribution by the viscous flow in Pt diffusion is
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • on the phonon scattering phenomena and much valuable information can be obtained from the relative intensities of the spectral components. It was shown by Tuinstra and Koenig in 1970 [22][23] and recently by Ferrari et al. [14][24] and Cançado et al. [25] that the D to G peak intensity ratio in the
PDF
Album
Review
Published 13 Oct 2014

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • target due to electronic excitations and ionizations. First, this energy is shared between the electrons of the target leading to the thermalization of the energy at a time scale of 10−15 to 10−14 s. Then the deposited energy is transferred from the electrons to the lattice through electron–phonon
  • coupling. This coupling causes an increase in the lattice temperature of the target at a time scale of 10−13 to 10−12 s. The transient local temperature of the thermal spike depends on the volume, in which the energy is deposited and on the strength of the electron–phonon coupling. The electron phonon
  • , the incoming ion transfers its energy to electrons of the target. Due to the high thermal conductivity, the deposited energy is quickly transferred to other electrons and the heat transferred to the metal lattice through electron–phonon coupling is not sufficient to cause the melting of the metal
PDF
Album
Full Research Paper
Published 01 Oct 2014

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • measured in nanostructured bismuth antimony telluride alloys, because phonon scattering at nanocrystal boundaries gives a reduced thermal conductivity [26]. Hovewer, TEGs based on bismuth telluride compounds have a small operating temperature range, because the Z factor rapidly decreases well below 2 × 10
  • distribution of filling ions as well as their “rattling” effect increases the phonon scattering on a large spectrum, so that the thermal conductivity is strongly reduced and Z is quite high. Several filling elements, such as La [32], Co [33], Ta [34], and others, have been experimented. Recently, filled [35
  • ). The first term ke takes into account the heat brought by the charge carriers (electrons or holes) that diffuse from the hot part TH to the cold part TC. The second term kph takes into account the heat conduction through the material crystalline lattice, due to phonon propagation. ke (e for electrons
PDF
Album
Review
Published 14 Aug 2014

Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles

  • Anh-Thu Thi Do,
  • Hong Thai Giang,
  • Thu Thi Do,
  • Ngan Quang Pham and
  • Giang Truong Ho

Beilstein J. Nanotechnol. 2014, 5, 1261–1267, doi:10.3762/bjnano.5.140

Graphical Abstract
  • the third peak at around 570 nm decreased. Interestingly, the obtained result is confirmed by the similarity of the luminescence bands of ZnO and ZnO:Cu [19][20][21]. The fine structure is assigned to the longitudinal optical phonon replica with an energy spacing of about 72 meV. This suggests that a
PDF
Album
Full Research Paper
Published 13 Aug 2014

Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

  • Peter Feng,
  • Muhammad Sajjad,
  • Eric Yiming Li,
  • Hongxin Zhang,
  • Jin Chu,
  • Ali Aldalbahi and
  • Gerardo Morell

Beilstein J. Nanotechnol. 2014, 5, 1186–1192, doi:10.3762/bjnano.5.130

Graphical Abstract
  • the featureless low intensity background at lower wave number. The FTIR peak at ≈1469 cm−1 could be assigned as bands bound by impurities or defects, or a phonon replica of bands. The comparison between the normalized FTIR spectra measured with increased spectral resolution from 1200 cm−1 to 1800 cm−1
PDF
Album
Full Research Paper
Published 31 Jul 2014

Thermal stability and reduction of iron oxide nanowires at moderate temperatures

  • Annalisa Paolone,
  • Marco Angelucci,
  • Stefania Panero,
  • Maria Grazia Betti and
  • Carlo Mariani

Beilstein J. Nanotechnol. 2014, 5, 323–328, doi:10.3762/bjnano.5.36

Graphical Abstract
  • , which were obtained by heating sample 2 in vacuum (≈10−4 mbar) up to 470 K (sample 3) and up to 560 K (sample 4). The IR transmittance spectra of those samples are reported in Figure 2. Sample 2 shows an IR phonon spectrum that strongly resembles that of hematite, α-Fe2O3 [27], with a smooth
  • transmittance between 500 and 650 cm−1 and the broad phonon band centered around 950 cm−1. However, we can observe a minimum of the transmittance around 700 cm−1, which is a fingerprint of maghemite (γ-Fe2O3) [27]. Thus, the clean sample 2 presents features that are typical of a mixture of α- and γ-Fe2O3. The
PDF
Album
Full Research Paper
Published 19 Mar 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • dependency has been observed [46]. Electron doping of 1.8·1013 cm−2 leads to a linewidth broadening of 6 cm−1 and the phonon frequency decreases by 4 cm−1. As our data shows a shift in both Raman active modes we suggest that the RIE SiO2 surface causes a slight strain and maybe local doping by charge
PDF
Album
Full Research Paper
Published 13 Mar 2014

Challenges in realizing ultraflat materials surfaces

  • Takashi Yatsui,
  • Wataru Nomura,
  • Fabrice Stehlin,
  • Olivier Soppera,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2013, 4, 875–885, doi:10.3762/bjnano.4.99

Graphical Abstract
  • progress toward the realization of ultraflat materials surfaces. First, we review the development of surface-flattening techniques. Second, we briefly review the dressed photon–phonon (DPP), a nanometric quasiparticle that describes the coupled state of a photon, an electron, and a multimode-coherent
  • phonon. Then, we review several recent developments based on DPP-photochemical etching and desorption processes, which have resulted in angstrom-scale flat surfaces. To confirm that the superior flatness of these surfaces that originated from the DPP process, we also review a simplified mathematical
  • model that describes the scale-dependent effects of optical near-fields. Finally, we present the future outlook for these technologies. Keywords: dressed photon–phonon; phonon-assisted process; polishing; self-organized process; Review Introduction In order to improve device performance and to
PDF
Album
Review
Published 11 Dec 2013

Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

  • Mikhail Pashchanka,
  • Jonas Bang,
  • Niklas S. A. Gora,
  • Ildiko Balog,
  • Rudolf C. Hoffmann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2013, 4, 868–874, doi:10.3762/bjnano.4.98

Graphical Abstract
  • structural properties can be thus obtained. The most intensive peak at 172 cm−1 results from the Γ1 chalcopyrite phonon mode (selenium anion vibration) [24]. This signal is commonly observed in CuInSe2 thin films and nanoparticles, and its intensity is associated with the crystalline quality [25][26][27]. A
PDF
Album
Full Research Paper
Published 10 Dec 2013

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • characteristic of the D (disorder-induced phonon mode [17]) and G (graphitic lattice mode E2g [18]) bands of carbon, respectively. The intensity ratio IG/ID of 0.7 indicates that a significant quantity of disordered carbon is also present in the nanocomposite. In addition, the A1g vibration mode of the Fe3O4
PDF
Album
Supp Info
Letter
Published 30 Oct 2013

Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

  • Paul Kühler,
  • Daniel Puerto,
  • Mario Mosbacher,
  • Paul Leiderer,
  • Francisco Javier Garcia de Abajo,
  • Jan Siegel and
  • Javier Solis

Beilstein J. Nanotechnol. 2013, 4, 501–509, doi:10.3762/bjnano.4.59

Graphical Abstract
  • characteristic e-phonon scattering time. Different carrier density dependent relaxation mechanisms have been proposed to explain extremely large collision frequencies (>2 × 1015 s−1) in c-Si for carrier densities above 1022 cm−3 (see [16] and references quoted therein). For what concerns the e-phonon scattering
  • delays for which ablation is first observable reach values close to the e-phonon scattering time in crystalline Si [19]. Images of the surface obtained for long delays indicate that in spite of the large local fluences achieved, particle lift up, caused by the ablation of the underneath material is a
PDF
Album
Full Research Paper
Published 04 Sep 2013

Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films

  • Sebastian Schnurr,
  • Ulf Wiedwald,
  • Paul Ziemann,
  • Valeriy Y. Verchenko and
  • Andrei V. Shevelkov

Beilstein J. Nanotechnol. 2013, 4, 461–466, doi:10.3762/bjnano.4.54

Graphical Abstract
  • conclusion on the amorphous state of the presently discussed films has immediate implications on their thermoelectric behavior. First of all, the scattering of electrons is dominated by the static disorder rather than by phonons. As a consequence, phonon drag effects, which usually are responsible for strong
  • temperature behavior with no indication for phonon drag peaks in the lower temperature range. Also the magnitude of the S(300 K)-values ranging between 4 and 8 μV/K are typical of high-resistance metallic glasses [16]. This clearly confirms the idea of amorphous rather than nanocrystalline structures for the
  • (300 K)-values of only some μV/K are likely. However, in crystalline samples a possibly present phonon drag may give rise to more pronounced nonlinearities in the temperature dependence of the Seebeck coefficient. Thus, at this point we conclude that the thermoelectric behavior of our films as
PDF
Album
Full Research Paper
Published 31 Jul 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • energy of Eg = 3.2 eV was extracted using Equation 1, assuming a phonon energy Ep ≈ 0. Figure 5b depicts the SPV of bare TiO2 as a function of the light intensity for super-bandgap illumination with a wavelength of 380 nm. The negative SPV indicates an n-type behavior of the material. The SPV exhibits a
PDF
Album
Full Research Paper
Published 01 Jul 2013

Photoelectrochemical and Raman characterization of In2O3 mesoporous films sensitized by CdS nanoparticles

  • Mikalai V. Malashchonak,
  • Sergey K. Poznyak,
  • Eugene A. Streltsov,
  • Anatoly I. Kulak,
  • Olga V. Korolik and
  • Alexander V. Mazanik

Beilstein J. Nanotechnol. 2013, 4, 255–261, doi:10.3762/bjnano.4.27

Graphical Abstract
  • were also characterized by Raman spectroscopy. Raman spectra of all samples in the spectral range studied (0–1000 cm−1) show the CdS LO phonon mode (≈300 cm−1) with its two overtones, which correspond to two- (≈600 cm−1) and three-phonon (≈900 cm−1) processes. Figure 5 presents the Raman spectrum of
  • the In2O3(400)/CdS system prepared by using 40 SILAR cycles. One phonon peak for CdS has a complex structure. The peak fitting by superposition of Lorentz lines allowed for the determination of position, full width at half maximum (FWHM) and relative intensity of the different components. The peak at
  • these peaks in the Raman spectra can testify to the fact that the samples studied contain not only In2O3 and CdS, but also some additional phases formed during the SILAR process. High values of the FWHM of the LO phonon peak can point to both a significant degree of CdS nanocrystal disorder and size
PDF
Album
Full Research Paper
Published 11 Apr 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • curing was employed. This device has an ultrasmall coefficient of thermal expansion (CTE), good mechanical load transfer, and good phonon transport across the interface. The control of the CNT orientation within the polymer matrix (PM) and the control of the interaction between both components are of
PDF
Album
Review
Published 22 Feb 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • (zero-phonon line, ZPL), and a broad emission band ranging from about 630 up to 750 nm is observed. In order to couple such broadband quantum emitters to a resonant optical light field a suitable broadband optical resonator is required. To realize a broadband resonator that has at the same time a high
  • can be coupled out with high efficiency from the resonator. In order to enhance the emission at the zero-phonon line (ZPL) of nitrogen–vacancy centers, diamond nanocrystals containing single NV centers were embedded into high quality pillar resonators (Figure 8a). In a first step, a bottom Bragg
  • centers in diamond are yet not well understood or even known. Above all, not every fluorescent defect center exhibits the desired characteristics for applications in quantum information processing [17], such as a small bandwidth, a low electron–phonon coupling, or a high oscillator strength. For this
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012
Other Beilstein-Institut Open Science Activities