Search results

Search for "plants" in Full Text gives 155 result(s) in Beilstein Journal of Nanotechnology.

Functional morphology, biomechanics and biomimetic potential of stem–branch connections in Dracaena reflexa and Freycinetia insignis

  • Tom Masselter,
  • Sandra Eckert and
  • Thomas Speck

Beilstein J. Nanotechnol. 2011, 2, 173–185, doi:10.3762/bjnano.2.21

Graphical Abstract
  • plants is one of the most important assets for developing large arborescent growth forms with complex crowns. While the form and development of branching in gymnosperms and dicotyledonous trees is widely understood, very little is known about branching patterns and the structure of branch–stem-junctions
  • determination of the maximal force, stress and strain at rupture as well as the fracture toughness. Functional morphology was correlated with the mechanical behaviour of these plants and compared to data of other dicotyledonous trees. The high energy absorption found in the rupture process of lateral branches
  • woody plants is their ability to form branches and canopies. Some of these branches can grow continuously and be as long-lived as the stems. This has always intrigued naturalists and botanists, and therefore, branching in woody plants has been the subject of scientific studies for centuries. These
PDF
Album
Supp Info
Video
Full Research Paper
Published 24 Mar 2011

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the
  • with contact angles >150° and their surface morphologies. Many studies, in which the properties of lotus leaves were compared with those of other superhydrophobic plants, have shown the superiority of the upper side of the lotus leaf. A standard tool for the determination of wettability or water
  • repellency is the measurement of the static contact angle by the ‘sessile drop’ method. Neinhuis and Barthlott (1997) [7] for example, measured contact angles on the lotus leaf of 162°, which are among the highest of the compared species, but many other (43%) of the tested superhydrophobic plants also showed
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • Petra Ditsche-Kuru Erik S. Schneider Jan-Erik Melskotte Martin Brede Alfred Leder Wilhelm Barthlott Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University of Bonn, Meckenheimer Allee 170, Bonn, 53115, Germany Department of Zoology: Functional Morphology and
  • Biomechanics, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1–9, Kiel, 24098, Germany Lehrstuhl Strömungsmechanik, Universität Rostock, Albert Einstein Str. 2, Rostock, 18051, Germany 10.3762/bjnano.2.17 Abstract Superhydrophobic surfaces of plants and animals are of great interest for
  • the air film on most superhydrophobic surfaces usually lasts no longer than a few days, a few semi-aquatic plants and insects are able to hold an air film over a longer time period. Currently, we found high air film persistence under hydrostatic conditions for the elytra of the backswimmer Notonecta
PDF
Album
Full Research Paper
Published 10 Mar 2011

Biomimetic materials

  • Wilhelm Barthlott and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2011, 2, 135–136, doi:10.3762/bjnano.2.16

Graphical Abstract
  • Wilhelm Barthlott Kerstin Koch Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany Rhine-Waal-University of Applied Sciences, Landwehr 4, 47533 Kleve, Germany 10.3762/bjnano.2.16 Life is a specific characteristic
  • of our planet. The diversity of life, biodiversity, is one of the most fascinating phenomena. We know some 1.8 million different species, but all extrapolations show that probably 20 million or more species exist: We know less than 10% of the plants, animals and micro-organisms living on the planet
PDF
Editorial
Published 10 Mar 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • , nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic
  • behavior of oil droplets on various superoleophobic surfaces created in the lab. Keywords: aquatic animals; biomimetics; drag; lotus plants; shark skin; superhydrophobicity; superoleophobicity; Introduction Biologically inspired design, adaptation, or derivation from nature is referred to as ‘biomimetics
  • understanding of the functions provided by objects and processes found in nature can guide us to imitate and produce nanomaterials, nanodevices, and processes [2]. There are a large number of objects (bacteria, plants, land and aquatic animals, seashells etc.) with properties of commercial interest. Natural
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities