Search results

Search for "semiconductors" in Full Text gives 341 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • University of Science and Technology, Wuhan 430074, China 10.3762/bjnano.9.183 Abstract In piezoelectric semiconductors, electric fields drive carriers into motion/redistribution, and in turn the carrier motion/redistribution has an opposite effect on the electric field itself. Thus, carrier drift in a
  • -axis; piezoelectric potential; semiconductor; zinc oxide (ZnO); Introduction An acoustic wave propagating in piezoelectric semiconductors usually stimulates electric fields that bring charge carriers into motion, and conversely, the carrier motion will produce an opposite effect on the electric fields
  • and the acoustic wave itself [1][2][3][4]. This kind of interaction between an acoustic wave and carriers in piezoelectric semiconductors is called the acoustoelectric effect, which is a special case of a more general phenomenon, called wave–particle drag [4][5]. Obviously, acoustoelectric coupling of
PDF
Album
Full Research Paper
Published 04 Jul 2018

Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy

  • Kazuki Miyata and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2018, 9, 1844–1855, doi:10.3762/bjnano.9.176

Graphical Abstract
  • [1]. It has been used under ultrahigh vacuum conditions for high-resolution imaging of various materials, including metals, semiconductors, metal oxides, and organic molecules [2][3][4][5]. Furthermore, recent advances in FM-AFM have enabled atom manipulation and identification at room temperature [6
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • supplied to the system and VOC decays until the charge equilibrium state is reached. The surface photovoltage (SPV), which can be seen as a local measurement of VOC in semiconductors [12], has been studied using KPFM under modulated illumination. Indeed, the investigation of the SPV evolution as a function
  • of a frequency-modulated excitation source can be used to access the photo-carrier dynamics in organic, inorganic and hybrid semiconductors [3][4][5][6][7][8][9][13]. In short, as depicted in Figure 1, FMI-KPFM consist of the measurement of a surface photovoltage by KPFM (time response between a few
PDF
Album
Full Research Paper
Published 20 Jun 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • former and latter structures are often termed as 2H-phase and 1T-phase, respectively. The stable phase for monolayer SnS2 is the 1T-phase. Alloying is an efficient approach to tune the electronic properties of semiconductors. Because of the large difference of bandgaps between SnSe2 and SnS2, the SnSe2(1
  • ] and agrees well with previous results [36]. SnS2 and SnSe2 monolayers are indirect-bandgap semiconductors, as highlighted in their band structures shown in Figure 1e and Figure 1i, respectively. The valence-band maximum (VBM) is located at the M-point, whereas the conduction-band minimum (CBM) is
PDF
Album
Full Research Paper
Published 18 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • defined as a nonthermal sample deformation under illumination. This effect is widely documented for ferroelectrics, polar and nonpolar semiconductors, and organic polymers, and it differs in origin depending on the class of material under consideration [18]. For instance, in the case of ferroelectric
  • above, there is nowadays overwhelming evidence that hybrid perovskites should be treated (at least to some extent) as mixed electronic–ionic semiconductors [29]. Ion migration occurs in these materials due to the existence of anion and cation vacancies [30] and is already known to induce changes in the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • could be uses in spintronics. But the lack of suitable materials limits the development of spintronic applications. Doping semiconductors may be applied to achieve spin-polarized currents, but this requires a complicated process. Although many materials have been predicted in theory for this purpose
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • synthesis; thin films; titanium dioxide; visible-light illumination; Introduction In recent years, titanium dioxide (TiO2) has emerged as one of the most widely investigated semiconductors [1]. Due to its favorable properties (e.g., chemical and biological stability, nontoxicity and inexpensive price) it
PDF
Album
Full Research Paper
Published 04 Jun 2018

Spatial Rabi oscillations between Majorana bound states and quantum dots

  • Jun-Hui Zheng,
  • Dao-Xin Yao and
  • Zhi Wang

Beilstein J. Nanotechnol. 2018, 9, 1527–1535, doi:10.3762/bjnano.9.143

Graphical Abstract
  • real systems. Majorana bound states have been theoretically proposed in several systems [9][6][5][20][13], while the experiments concentrate on semiconductors with spin–orbit coupling and the superconducting gap that is induced by the superconducting proximity effect [21][24][25][19]. One promising
PDF
Album
Full Research Paper
Published 22 May 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • of inorganic compounds such as ceramics, minerals and semiconductors [41][42][43]. CL has also been shown to be an invaluable tool in the investigation of optical modes of nanostructures [44]. These include characterising the plasmonic modes of silver nanoparticles [45] and resonant modes of single
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • for degradation of pollutants was first applied by Frank and Bard in 1977 to reduce CN− in water [57][58]. Thereafter, significant research on photocatalytic degradation of hazardous organic compounds and reduction of toxic heavy metal ions (Cr(VI)) was carried out over various semiconductors upon
  • friendly nature [69][70][71][72]. Moreover, photoexcited TiO2 surfaces possess super hydrophilic properties which are evident from their excellent anti-fogging and self-cleaning abilities [73]. The unique feature of TiO2 among other semiconductors is that the reduction of Cr(VI) occurs at its CB since the
  • semiconductors as they have good electron collector and transporter properties. These materials suppress the recombination of charge carriers by effectively transporting the photoinduced electrons of the semiconductor, resulting in high photocatalytic activity [111][112][113][114][115][116]. In addition to this
PDF
Album
Review
Published 16 May 2018

Robust midgap states in band-inverted junctions under electric and magnetic fields

  • Álvaro Díaz-Fernández,
  • Natalia del Valle and
  • Francisco Domínguez-Adame

Beilstein J. Nanotechnol. 2018, 9, 1405–1413, doi:10.3762/bjnano.9.133

Graphical Abstract
  • spin Hall effect [5]. However, no clear signatures of conductance quantization have been observed yet [6][7]. Besides II–VI compound semiconductors, such as HgTe, IV–VI semiconductors support non-trivial edges states as well [8]. In this regard, Dziawa et al. reported evidence of topological
  • field is applied along the growth direction, parallel to the electric field, will also be briefly discussed for comparison. Theoretical model We consider heterojunctions of IV–VI compound semiconductors, such as Pb1−xSnxTe and Pb1−xSnxSe. The latter are known to shift from being semiconductors to
  • the results [28]. In the absence of external fields, it is well known that band-inverted junctions support topologically protected states located at the interface. Their energy lies within the common gap of the two semiconductors and the dispersion relation is a Dirac cone [13][15][16][20]. The Dirac
PDF
Album
Full Research Paper
Published 14 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • these disadvantages [38][39][40][41][42]. The integration of VLD components with wide bandgap semiconductors having well-matched energy bands has provided a new opportunity for the development of VLD photocatalysts [12]. As a consequence, some Ag2WO4-based composites containing VLD components such as
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • 10.3762/bjnano.9.119 Abstract Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved
  • function [3][4][5]. (ii) The CPD can reflect spatial variations in the charge density [6][7][8], individual localized charges [9], or even partial charge densities within a single molecule [10][11]. Finally, (iii) doping type and charge-carrier concentration in semiconductors will control the position of
  • sample) to compensate the electrostatic forces between tip and sample, where the time constant of the KPFM controller is typically in the range of milliseconds. However, especially in semiconductors, and in view of points (ii) and (iii), the charge dynamics are of high interest in materials and device
PDF
Album
Full Research Paper
Published 24 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • . Furthermore, band-gap tuning is also possible by application of tensile strain. Our results highlight a new family of 2D materials with great potential for solar cell applications. Keywords: density functional theory (DFT); photovoltaic applications; solar cell; two-dimensional semiconductors; Introduction
  • ]. However, they did not report the band structure or the band gap values of these materials. Later, Wu et al. performed theoretical studies on silicon and germanium arsenides [9] to predict and reaffirm that m-SiAs/GeAs and o-SiAs2/GeAs2 are indeed semiconductors. The studies were based on band-structure
  • (Figure 3a–d) are semiconductors with indirect band gaps (the VBM and CBM locations are marked). The bandgaps are given in Table 2. These results are consistent with previously reported calculated values for both bulk and monolayers of GeAs2 with values of 0.99 and 1.64 eV, respectively [10]. The decrease
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

P3HT:PCBM blend films phase diagram on the base of variable-temperature spectroscopic ellipsometry

  • Barbara Hajduk,
  • Henryk Bednarski,
  • Bożena Jarząbek,
  • Henryk Janeczek and
  • Paweł Nitschke

Beilstein J. Nanotechnol. 2018, 9, 1108–1115, doi:10.3762/bjnano.9.102

Graphical Abstract
  • temperature changes. Characteristic temperatures determined from the slope changes of the Δ(T) plot appeared to be very good guess values for the phase transition temperatures. Keywords: non-linear optics; organic semiconductors; spectroscopic ellipsometry; theoretical modeling; thin films; Introduction The
PDF
Album
Full Research Paper
Published 05 Apr 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • types of single-photon emitters that include molecules [3], trapped atoms [4], quantum dots [5] and defects in diamond [6]. More recently point defects of wide-bandgap semiconductors, such as zinc oxide (ZnO) [7][8][9] and silicon carbide [10], were shown to exhibit room-temperature single-photon
PDF
Album
Full Research Paper
Published 04 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • production methods for these carbon-based materials fabrication (except carbon black) [8]. (ii) Inorganic-based nanomaterials: These NMs include metal and metal oxide NPs and NSMs. These NMs can be synthesized into metals such as Au or Ag NPs, metal oxides such as TiO2 and ZnO NPs, and semiconductors such as
PDF
Album
Review
Published 03 Apr 2018

Non-equilibrium electron transport induced by terahertz radiation in the topological and trivial phases of Hg1−xCdxTe

  • Alexandra V. Galeeva,
  • Alexey I. Artamkin,
  • Alexey S. Kazakov,
  • Sergey N. Danilov,
  • Sergey A. Dvoretskiy,
  • Nikolay N. Mikhailov,
  • Ludmila I. Ryabova and
  • Dmitry R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 1035–1039, doi:10.3762/bjnano.9.96

Graphical Abstract
  • carrier transport. Laser terahertz probing is known to be a powerful tool that may provide an insight into the electron dynamics in semiconductors, particularly, in topological insulators [9][10][11]. Study of non-equilibrium processes in Hg1−xCdxTe in the terahertz spectral range is additionally
PDF
Album
Letter
Published 29 Mar 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • surface potential changes on the hybrid system. In summary, interface-induced organized structures atop 2D materials may have an important impact on both design and operation of π-conjugated nanomaterial-based hybrid systems. Keywords: DFT calculations; graphene; organic semiconductors; scanning probe
  • microscopy; self-assembly; Introduction Organic semiconductors offer a wide range of possible applications, from thin-film transistors to sensors and solar cells [1][2][3][4][5][6]. Their optical and electronic properties are strongly linked to intermolecular interaction parameters associated with molecular
  • ] and, thus, its optical properties are key to the successful development of devices. Since molecular packing and ordering influence optical properties of organic semiconductors [7][8][9][10][11][12][13], it is important to investigate whether the graphene-induced ordering affected the optical
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • , by morphology design [22][23][24][25][26], surface modification [27][28][29][30][31][32], doping [33][34][35][36], or the formation of heterojunctions with other semiconductors [37][38][39][40]. Modification with noble metals seems the most promising as it is well known that under UV irradiation
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • semiconductor’s band gap. Bismuth(III)-containing semiconductors (such as bismuth oxide [17], bismuth vanadate [18][19], bismuth tungstate [20], bismuth perovskite [21], bismuth molybdate [22], etc.) have been extensively researched as a broad hybrid orbital composed of Bi 6s in the field of photocatalysis
  • heterojunctions could promote increased photocatalytic activity efficiency. Once the p–n junction has been formed, the inner electric field between the inner surface of two semiconductors will promote the separation efficiency of photoinduced electron–hole pairs [30][31]. Consequently, coupling an n-type metal
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • -oxide semiconductors are still of significant consideration. In this work, we propose a simple photochemical approach to synthesize Au NPs directly deposited on the surface of pre-synthesized ZnO nanostructures synthesized by chemical bath deposition on glass substrates. Morphological evaluation
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • , another distinguishing characteristic of plasmonic photocatalysts is that they also behave as an electron trap. The incorporation of a noble metal with semiconductors in the formation of Schottky junctions contributes to this behaviour [5]. This barrier formation prevents the recombination of electrons
  • itself has the ability to extend the absorption of visible light [37][38][39][40][41][42][43][44]. Moreover, future studies on other semiconductors such as metal chalcogenides and metal phosphides could lead to further developments for plasmonic photocatalysts to address current environmental and energy
  • of nanoparticle formation and deposition using an sustainable approach is illustrated in Figure 6. Interaction of noble metals with semiconductor materials Most of the literature claims that the incorporation of plasmonic nanoparticles with semiconductors can extend light absorption towards the
PDF
Album
Review
Published 19 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • titanium dioxide spheres results in a red-shift of absorption edge for the IL–TiO2 semiconductors. In this regard, the direct increase of the photoactivity of IL–TiO2 in comparison to pristine TiO2 was observed. The active species trapping experiments indicated that O2•− is the main active species, created
  • pollutants in aqueous and gas phases requires visible-light responsive, stable materials and a basic understanding of these materials [1][2][3][4]. Although various semiconductors are considered for environmental pollution abatement, titanium dioxide (TiO2) is still the most promising due to its stability
  • hindrance created by [ODMIM][Cl] at the TiO2 surface, hence a probably less firmly packed organic protection layer. Additionally, the XPS analysis also confirmed that C, N and Cl atoms are located solely on the surface of the semiconductors. Hereby, the possible mechanism of the TiO2 photoactivity
PDF
Album
Full Research Paper
Published 14 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • of the positive results, the self-modification consumes concentrated alkali and acid, which is harmful to our environment and health. It has been accepted that the coupling of nanocarbon materials with other semiconductors [21] could induce synergetic effects like photosensitization, electron
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018
Other Beilstein-Institut Open Science Activities