Search results

Search for "spring constant" in Full Text gives 172 result(s) in Beilstein Journal of Nanotechnology.

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • fundamental frequency, spring constant, and quality factor of the cantilever were equal to f0 = 142 kHz, k = 20 N/m, Q = 300, respectively. We avoided performing electron microscopy on the HOPG samples because the electron beam energy could ionize H2O and NH3 adsorbents and cause additional effects [43]. XPS
PDF
Album
Full Research Paper
Published 13 Dec 2012

Spring constant of a tuning-fork sensor for dynamic force microscopy

  • Dennis van Vörden,
  • Manfred Lange,
  • Merlin Schmuck,
  • Nico Schmidt and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 809–816, doi:10.3762/bjnano.3.90

Graphical Abstract
  • Dennis van Vorden Manfred Lange Merlin Schmuck Nico Schmidt Rolf Moller Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1–21 47048 Duisburg, Germany 10.3762/bjnano.3.90 Abstract We present an overview of experimental and numerical methods to determine the spring constant of a quartz
  • taking account of the real geometry including the glue that is used to mount the tuning fork. Keywords: atomic force microscopy; finite element method; spring constant; thermal fluctuation; tuning fork; Introduction Quartz tuning forks provide excellent self-sensing probes in scanning probe microscopy
  • and sample surface, according to where is the average force gradient between tip and sample, Δf is the frequency shift, k is the spring constant of the sensor and f0 is the resonance frequency of the sensor without interaction with the sample. While the resonance frequency may be measured accurately
PDF
Album
Full Research Paper
Published 29 Nov 2012

Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM

  • Cagri Üzüm,
  • Johannes Hellwig,
  • Narayanan Madaboosi,
  • Dmitry Volodkin and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2012, 3, 778–788, doi:10.3762/bjnano.3.87

Graphical Abstract
  • . The full-indentation method requires a stiff, calibrated cantilever equipped with a tip that is significantly longer than the film is thick. The measurements are reasonably fast and reproducible, and the film damage caused is limited to a small area (r ≈ 50 nm). The spring constant of the cantilever
  • rigid surface and driving it further down by the piezo unit for a known distance. As there could not be any indentation on a hard surface, the driving distance was equal to the deflection of the cantilever. This step is crucial both for determination of the spring constant and for indentation
  • measurements. Although the spring constant kc was given by the manufacturer as 0.05 N/m (unless stated otherwise), its exact value was determined before each measurement by the thermal noise method, which is a built-in procedure in the MFP-3D instrument (Asylum Research, CA, USA). Thickness measurements Two
PDF
Album
Full Research Paper
Published 21 Nov 2012

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • mode, in which the deflection sensitivity obtained from the force curve was multiplied by the change in setpoint voltage. For single-nanoparticle contact, a sharp silicon tip (FORT series, Applied NanoStructures, Inc., Santa Clara, CA,) with a spring constant k = 3 N/m and nominal radius of 15 nm was
  • of friction, a soda lime glass sphere (Duke Scientific Corporation, Palo Alto, CA) of nominal radius 15 µm attached to a silicon probe (FORT series, Applied NanoStructures, Inc., Santa Clara, CA,) with a spring constant k = 3 N/m was used. Coefficient of friction data were obtained by plotting the
PDF
Album
Full Research Paper
Published 15 Nov 2012

Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing

  • Blake W. Erickson,
  • Séverine Coquoz,
  • Jonathan D. Adams,
  • Daniel J. Burns and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2012, 3, 747–758, doi:10.3762/bjnano.3.84

Graphical Abstract
  • . Quantitative Nanomechanical Mapping (QNM) – AFM imaging in fluid Images were captured on a Multimode system with an E-scanner (Bruker Nano: Santa Barbara, CA, USA). A standard DNP-A (Bruker AFM Probes: Camarillo, CA, USA) cantilever was used with a spring constant of 0.40 N/m. Images at 5 µm were captured at
  • modified Multimode system with an E-scanner (Bruker Nano: Santa Barbara, CA, USA). A customized small-lever head allowed for the use of small cantilevers (SCL-Sensor.Tech., Vienna, Austria). The cantilever had a resonance frequency in fluid of 266.49 kHz, a spring constant of 0.54 N/m and a Q value of 2.68
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2012

Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

  • Bharat Bhushan,
  • Si Chen and
  • Shirong Ge

Beilstein J. Nanotechnol. 2012, 3, 731–746, doi:10.3762/bjnano.3.83

Graphical Abstract
  • Nanoscale surface roughness and coefficient of friction were measured by using a commercial AFM system (Dimension Nanoscope IIIa, Veeco, Santa Barbara, CA) under ambient conditions. Fort A-20 tips (Si, N-type, 10 nm radius, spring constant of 3 N/m) (Appnano, Santa Clara, CA) were used. The coefficient of
PDF
Album
Full Research Paper
Published 08 Nov 2012

Mapping mechanical properties of organic thin films by force-modulation microscopy in aqueous media

  • Jianming Zhang,
  • Zehra Parlak,
  • Carleen M. Bowers,
  • Terrence Oas and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 464–474, doi:10.3762/bjnano.3.53

Graphical Abstract
  • angular frequency of the actuation, kc is the spring constant of the AFM cantilever, and k* is the contact stiffness, The contact stiffness is a function of the reduced Young’s modulus, E*, the tip radius, R, and the applied force, F. Equation 1 explains how the amplitude of the AFM cantilever deflection
  • a gold surface, are shown in Figure 2. For these experiments, we used a cantilever with a spring constant of 0.9 N/m and a resonance frequency of 47.8 kHz in solution. The different regions of the deflection (Figure 2a) and amplitude curves (Figure 2b and Figure 2d) indicate both the position of the
  • be soft to prevent destructive forces on compliant samples. Therefore we used ScanAsyst-Fluid cantilevers (Bruker Probes) that have 0.7 N/m nominal spring constant and 50 kHz free resonance frequency in solution. The deflection sensitivity of each cantilever was determined from a force–displacement
PDF
Album
Supp Info
Letter
Published 26 Jun 2012

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • -grade water, dried under a stream of nitrogen, and mounted on steel sample disks prior to AFM measurements. AFM topographic images were collected in contact mode by using V-shaped silicon nitride cantilevers (Nanoprobe, Veeco, spring constant 0.12 N/m; tip radius 20–60 nm) using a MultiMode atomic force
PDF
Album
Full Research Paper
Published 15 May 2012
Graphical Abstract
  • held and the duty cycle of the input signal was immediately changed to 99.5% so that a square pulse with a duration of 10 μs was applied to the driver circuit. Since a soft cantilever with a nominal spring constant of 0.03 N/m was used, once it drifted into contact with the substrate during data
PDF
Album
Full Research Paper
Published 19 Mar 2012

Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique

  • Zsolt Majzik,
  • Martin Setvín,
  • Andreas Bettac,
  • Albrecht Feltz,
  • Vladimír Cháb and
  • Pavel Jelínek

Beilstein J. Nanotechnol. 2012, 3, 249–259, doi:10.3762/bjnano.3.28

Graphical Abstract
  • the important oscillation stability [8][9][10]. The key factor to achieve atomic resolution is the proper choice of several parameters, for example, the spring constant and the oscillation amplitude (see Table I in [11]). Theoretically, the optimal signal-to-noise ratio (SNR) is achieved at a value of
PDF
Album
Full Research Paper
Published 15 Mar 2012

Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy

  • Joachim Welker,
  • Esther Illek and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 238–248, doi:10.3762/bjnano.3.27

Graphical Abstract
  • one oscillation cycle, which is fulfilled, for example, for small amplitudes, the actual resonance frequency f can be calculated with an effective spring constant k + kts where m is the effective mass and k the spring constant of the cantilever. For kts << k we can expand the square root in Equation 1
  • (maximum attractive force). Therefore, we also compare the deviation from the model values: To calculate the frequency shift we chose a tuning fork sensor in the qPlus design [13] with a spring constant of k = 1800 N/m and a resonance frequency of f0 = 32768 Hz. This sensor can operate with very small
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2012

Modeling noncontact atomic force microscopy resolution on corrugated surfaces

  • Kristen M. Burson,
  • Mahito Yamamoto and
  • William G. Cullen

Beilstein J. Nanotechnol. 2012, 3, 230–237, doi:10.3762/bjnano.3.26

Graphical Abstract
  • spring constant k = 40 N/m and resonant frequency f0 = 300 kHz. We then convert to the normalized frequency shift γ, which is defined as [20] Results and Discussion Using the model, we arrive at several key results. First, we find that the generally assumed Hamaker force law for the interaction between a
PDF
Album
Full Research Paper
Published 13 Mar 2012

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • to its large spring constant of about 9000 N/m. The force-spectroscopy measurements were performed on the organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) grown on a Ag/Si(111) √3 × √3 surface. PTCDA has been extensively studied as a candidate for organic devices [10][11][12][13
  • regime due to its large spring constant of about 9000 N/m, preventing a jump to contact. This offers the advantage that in this regime the measurements are more sensitive to short-range forces and dissipation processes. The resonance frequency and quality factor of the tuning fork at 77 K temperature and
PDF
Album
Full Research Paper
Published 08 Mar 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • fork. The qPlus sensor [8] is based on a quartz tuning fork, in which one prong is attached to a carrier substrate. The large spring constant of the qPlus, k = 1800 Nm−1, allows one to overcome the snap-to-contact-problem in small-amplitude operation [9]. In this mode, the qPlus setup is customized for
  • noise Here A is the cantilever amplitude, f0 the undisturbed resonance frequency of the cantilever, k the spring constant, Q the quality factor of the oscillation, nq the deflection-noise density, B the bandwidth of the measurement, kB the Boltzmann constant and T the temperature. In each term, the
  • necessary in order to reduce the noise by reducing the bandwidth. In Figure 2b the flattened raw data of the frequency-shift channel gathered in lift-mode show an image contrast of ±5 mHz along the bit tracks. According to the resonance frequency f0 = 24097 Hz and spring constant k = 1250 Nm−1 of the sensor
PDF
Album
Letter
Published 29 Feb 2012

Self-assembly of octadecyltrichlorosilane: Surface structures formed using different protocols of particle lithography

  • ChaMarra K. Saner,
  • Kathie L. Lusker,
  • Zorabel M. LeJeune,
  • Wilson K. Serem and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2012, 3, 114–122, doi:10.3762/bjnano.3.12

Graphical Abstract
  • reflex coating, with a spring constant of 48 N/m (Nanoscience Instruments, Phoenix, AZ). For contact-mode images, V-shaped tips (Veeco Probes, Santa Barbara, CA) with an average force constant of 0.5 N/m were used. Data files were processed by using Gwyddion open-source software, which is freely
PDF
Album
Full Research Paper
Published 09 Feb 2012

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • structures were characterised by scanning electron microscopy (Hitachi S4800) and atomic force microscopy (PicoPlus, Molecular Imaging). Using Veeco NPS10 nonconductive silicon nitride tips (spring constant 0.06 N/m) AFM images were recorded in contact mode by using forces between 7 and 13 nN and scan rates
PDF
Album
Full Research Paper
Published 06 Feb 2012

Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group

  • Einat Tirosh,
  • Enrico Benassi,
  • Silvio Pipolo,
  • Marcel Mayor,
  • Michal Valášek,
  • Veronica Frydman,
  • Stefano Corni and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2011, 2, 834–844, doi:10.3762/bjnano.2.93

Graphical Abstract
  • measurement, Au and glass are considered equally stiff since the modulus signal saturates at about 5 GPa due to the limits of the cantilever spring constant and the signal sensitivities. The glass surface then serves as an in situ reference to which the film modulus can be compared. Scanning these samples
PDF
Album
Full Research Paper
Published 20 Dec 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • amplitude of a piezo-element coupled to the cantilever, f0, k and Q are the resonance frequency, the spring constant and the quality factor of the free cantilever, respectively, and is the phase shift caused by the interaction between the tip and the underlying particles or surface. The calculation of the
PDF
Album
Full Research Paper
Published 04 Feb 2011

Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

  • Bert Stegemann,
  • Matthias Klemm,
  • Siegfried Horn and
  • Mathias Woydt

Beilstein J. Nanotechnol. 2011, 2, 59–65, doi:10.3762/bjnano.2.8

Graphical Abstract
  • the MIT temperature are shown in Figure 3. The plot shows the force interaction during approach and retraction of the spherical AFM tip from the sample surface. During retraction the tip adheres to the sample until the spring constant of the cantilever overcomes the adhesion force and the cantilever
  • to the sample acceptance stage. The actual temperature of the sample plates is taken from a calibration curve with an accuracy of ±20 K as provided by the manufacturer. The spring constant of the cantilevers with attached microsphere (typically 3.0 ± 0.2 N/m) was determined by means of the reference
  • cantilever technique, where the cantilever under test was deflected in situ against a cantilever with a precisely known spring constant [40][41]. The spring constant of the reference cantilever (Park Scientific Instruments) was determined by a calculation based on geometrical dimensions and resonance
PDF
Album
Full Research Paper
Published 27 Jan 2011

Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM

  • Thilo Glatzel,
  • Lars Zimmerli,
  • Shigeki Kawai,
  • Ernst Meyer,
  • Leslie-Anne Fendt and
  • Francois Diederich

Beilstein J. Nanotechnol. 2011, 2, 34–39, doi:10.3762/bjnano.2.4

Graphical Abstract
  • maintaining a constant shift of the first flexural resonance frequency f1st with respect to the resonance far from the surface. Highly doped silicon cantilevers with integrated tips (Nanosensors, NCL), a typical resonance frequency f1st ≈ 160 kHz and a spring constant k ≈ 30 N/m were employed as a force
PDF
Album
Video
Full Research Paper
Published 13 Jan 2011

The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

  • W. Merlijn van Spengen,
  • Viviane Turq and
  • Joost W. M. Frenken

Beilstein J. Nanotechnol. 2010, 1, 163–171, doi:10.3762/bjnano.1.20

Graphical Abstract
  • the spring constant of the device. This calibration has been implemented by designing two MEMS tribometers on the same chip, which have identical springs, but a known difference in mass. From the difference in resonance frequency we extract the spring constant, being 2.0 ± 0.2 N/m for the device used
PDF
Album
Full Research Paper
Published 22 Dec 2010

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • . Rectangular-shaped Si3N4 AFM-cantilevers (Biolever, Olympus/OBL, Veeco) with V-shaped tips were used in all measurements. Spring constant calibrations typically fell within a 20% margin of error from the nominal spring constant of 0.005 N/m. The radius of curvature of each AFM-cantilever tip (Rtip) was
  • the AFM-cantilever spring constant kAFM. For the force curves the F vs Z data were converted to F vs tip - sample approach distance (D) by further subtraction of the AFM-cantilever deflection from Z [32]. The AFM contact mode images were obtained at a scan rate of ~1.5 µm/s. (A) Scanning electron
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities