Search results

Search for "switching" in Full Text gives 248 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • actuation strain 56% higher than pristine graphene paper [158]. In another work, Liang et al. have prepared free-standing graphene–Fe3O4 hybrid papers having magnetic-controlled switching performance [159]. One interesting structure was realised using hydrothermal reduction by Wu et al. They prepared Fe
  • + acts as a bridge, connecting GO sheets and introducing new energy levels along the electron transport pathway thereby opening up possible conduction channels [216]. Singh et al. reported a bipolar, resistive switching device incorporating a copper oxide and multilayer graphene hybrid where the
  • electrical characteristics of CuO–graphene bilayer structure has been modified largely due to the electronic interaction at the hybrid interface. The O2 intake capacity of the multilayer graphene results in reversible bipolar resistive switching properties [217]. Zhou et al. prepared graphene-wrapped CuO
PDF
Album
Review
Published 24 Mar 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • -scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of
  • the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (Ubias
  • ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper
PDF
Album
Full Research Paper
Published 01 Mar 2017

Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

  • Felix Pyatkov,
  • Svetlana Khasminskaya,
  • Vadim Kovalyuk,
  • Frank Hennrich,
  • Manfred M. Kappes,
  • Gregory N. Goltsman,
  • Wolfram H. P. Pernice and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2017, 8, 38–44, doi:10.3762/bjnano.8.5

Graphical Abstract
  • probe along with on-chip electrical wiring. Upon switching the electrical signal on and off, we observe a fast initial response on a sub-nanosecond timescale, followed by an additional slower response on the scale of 10–100 ns. A similar behavior has been observed with electrically biased SWCNT films
  • measurements using single-photon detectors with different time resolutions given by the timing jitter of the detectors (350 ps for τ-SPAD and 40 ps for SNSPD for a wavelength range of 700–900 nm). Upon switching off the electrical signal, the emission intensity decays exponentially. Experimentally, τtherm
  • generator and connectors lead to additional broadening of the light pulse and thus increase of the measured decay time. Due to these instrumental restrictions, we are not able to determine the upper limit of the switching rate for the presented waveguide-coupled CNT-based light emitter. However, even the
PDF
Album
Full Research Paper
Published 05 Jan 2017

Grazing-incidence optical magnetic recording with super-resolution

  • Gunther Scheunert,
  • Sidney. R. Cohen,
  • René Kullock,
  • Ryan McCarron,
  • Katya Rechev,
  • Ifat Kaplan-Ashiri,
  • Ora Bitton,
  • Paul Dawson,
  • Bert Hecht and
  • Dan Oron

Beilstein J. Nanotechnol. 2017, 8, 28–37, doi:10.3762/bjnano.8.4

Graphical Abstract
  • may open an alternative route to high-durability HAMR. Magnetic switching is demonstrated on consumer-grade CoCrPt perpendicular magnetic recording media using a green and a near-infrared diode laser. Sub-500 nm magnetic features are written in the absence of a NFT in a moderate bias field of only μ0H
  • (featuring PMR CoCrPt recording medium, TC ≈ 880 K) we demonstrate, by proper choice of parameters, that even laser powers comparable to SPR-HAMR already cause magnetic switching in the presence of a homogeneous magnetic bias field of μ0HB = 0.3 T – at a resolution six times smaller than the laser spot size
  • -incidence laser-sample geometry were Guyader and co-workers [13] who studied sub-100 ps all-optical magnetization switching of patterned ferrimagnetic GeFeCo recording material – also in an effort to elude the far-field diffraction limit, but utilizing lateral electric field interference patterns. In
PDF
Album
Full Research Paper
Published 04 Jan 2017

Morphology of SiO2 films as a key factor in alignment of liquid crystals with negative dielectric anisotropy

  • Volodymyr Tkachenko,
  • Antigone Marino,
  • Eva Otón,
  • Noureddine Bennis and
  • Josè Manuel Otón

Beilstein J. Nanotechnol. 2016, 7, 1743–1748, doi:10.3762/bjnano.7.167

Graphical Abstract
  • of particle incidence. Moreover, two-fold alignment domains can appear with two easy axes symmetrical with respect to that plane [4][8]. Amosova et al. [5] explained switching in LC alignment in terms of the length of the crystallites forming relief of the aligning surface and surface wetting by
PDF
Album
Full Research Paper
Published 17 Nov 2016

Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

  • Christoph Schreyvogel,
  • Vladimir Polyakov,
  • Sina Burk,
  • Helmut Fedder,
  • Andrej Denisenko,
  • Felipe Fávaro de Oliveira,
  • Ralf Wunderlich,
  • Jan Meijer,
  • Verena Zuerbig,
  • Jörg Wrachtrup and
  • Christoph E. Nebel

Beilstein J. Nanotechnol. 2016, 7, 1727–1735, doi:10.3762/bjnano.7.165

Graphical Abstract
  • terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much
  • higher than the hyperfine interaction frequency between an electron spin (of NV−) and a nuclear spin (of 15N or 13C for example) of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with
  • for quantum communication and cryptography. Keywords: active charge state control; diamond; fast charge state switching; NV centre; two-dimensional Schottky diode; Introduction The nitrogen-vacancy centre (NV centre) in diamond is known to exist in at least three different charge states (NV−, NV0
PDF
Album
Letter
Published 16 Nov 2016

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • SnO2 leads to a considerable increase in selectivity as well as increase in sensitivity to CO(CH3)2, which is according to literature [2], completely unique for both TiO2 and SnO2. Secondly, the well thought out, design engineering of the TiO2 microstructure allows for switching from the H2 highly
PDF
Album
Full Research Paper
Published 15 Nov 2016

Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory

  • Austin Deschenes,
  • Sadid Muneer,
  • Mustafa Akbulut,
  • Ali Gokirmak and
  • Helena Silva

Beilstein J. Nanotechnol. 2016, 7, 1676–1683, doi:10.3762/bjnano.7.160

Graphical Abstract
  • lower potential side of the magnetic junction. This asymmetry in heating, which has also been observed experimentally, is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset
  • deposition SiO2 [2][17] and Si3N4 [18]. The “ON” and “OFF” states of the device are represented via interchangeable sets of materials properties for the CoFeB layers [4][13] (Figure 2, Figure 3) that are chosen based on the desired switching operation to be simulated (anti-parallel properties to simulate an
  • OFF–ON switching operation, parallel properties for the converse operation, see inset in Figure 2). Simulation procedures Analysis of the self-heating of the device is performed for different passivation materials (Table 1), positive and negative current polarity, and four contact configurations
PDF
Album
Full Research Paper
Published 11 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • is demonstrated by the investigation of real water samples. For all real water samples higher signal changes were achieved when the nanohole arrays were functionalized with graphene shown exemplary with water from the river Danube (Figure 7A). By switching back to washing conditions, the original
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • are about 0.5 µs and 5.5 µs, respectively. Rise time and fall time were estimated from characteristics taking into consideration only the interval between 10% and 90% of the signal peak value. For all switching frequency values, the response of the tested photodetector structures is fast and shows a
  • ; (b) the relative balance (Vmax − Vmin)/Vmax versus switching frequency. The inset represents the schematic setup used to investigate the time response of the photodetector. Acknowledgements This work was supported by the Romanian National Authority for Scientific Research through the Core Program
PDF
Album
Full Research Paper
Published 21 Oct 2016

Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

  • Eduardo Aluicio-Sarduy,
  • Simone Callegari,
  • Diana Gisell Figueroa del Valle,
  • Andrea Desii,
  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2016, 7, 1404–1410, doi:10.3762/bjnano.7.131

Graphical Abstract
  • switching; photonic crystal; plasmonic nanoparticles; Introduction Structural colour is colour due to the Bragg reflection (in photonic structures for example) as opposed to colour from pigments or colour centres [1]. The active tuning of the structural colour in photonic crystals is a subject that has
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2016

Adiabatic superconducting cells for ultra-low-power artificial neural networks

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev and
  • Maxim V. Tereshonok

Beilstein J. Nanotechnol. 2016, 7, 1397–1403, doi:10.3762/bjnano.7.130

Graphical Abstract
  • ], those for signal classification and recognition are less developed. A solution for the recognition problem by employing perceptron ANNs was sought in earlier works with SQUID-based neuron switching [14][15] in the resistive state. In subsequent variations [16][17], this feature was found to drastically
PDF
Album
Letter
Published 05 Oct 2016

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • the external field and extract the intrinsic hysteresis loop of the MFM tip [25]. Typically, a large Barkhausen jump is observed with a well-defined switching field. By doing so, the measured average switching field for the 20 nm Co homemade tip is μ0∙ = (31 ± 4) mT, where a total of 30
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

  • Anja Henning-Knechtel,
  • Matthew Wiens,
  • Mathias Lakatos,
  • Andreas Heerwig,
  • Frieder Ostermaier,
  • Nora Haufe and
  • Michael Mertig

Beilstein J. Nanotechnol. 2016, 7, 948–956, doi:10.3762/bjnano.7.87

Graphical Abstract
  • origami chains may occur around the field intensity maxima. Switching the field off resulted in diffusing of the structures away from the electrodes, and thus, disassembling of the chains (Figure 4d). On the one hand, this is a clear sign that the gold nanoparticle-conjugated DNA origami do not
  • irreversibly aggregate during DEP deposition, as it was observed for the formation of conducting wires by DEP deposition of plain, unsupported gold nanoparticles [35][36][37][38][39]. On the other hand, the disassembly of our chain structures upon switching off the electrical field prohibits any further high
  • at 1·106 V/m and 16 MHz. Inverted fluorescence microscopy image after 16 min (left) and 26 min (right) ac field application. (d) Inverted fluorescence microscopy images of the trapping behavior during on/off-switching of the ac field. Electrical field intensity (a) in the presence of a gold
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016

Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

  • Amanda García-García,
  • Ricardo Vergaz,
  • José F. Algorri,
  • Gianluigi Zito,
  • Teresa Cacace,
  • Antigone Marino,
  • José M. Otón and
  • Morten A. Geday

Beilstein J. Nanotechnol. 2016, 7, 825–833, doi:10.3762/bjnano.7.74

Graphical Abstract
  • for the possibility of tuning the LC properties by doping with SWCNTs. In the last years, several studies have described SWCNT orientation in LC matrices, based on for example the conductivity of SWCNT-doped LC cells at different switching degrees [12][13][14][15]. SWCNT–LC blends co-align
  • switching of the CNTs caused by the interaction with the field and with the LC molecules in this study. Therefore, this study is focused on determining the origin of the SWCNT switching in a LC matrix, by isolating the LC switching and the SWCNT switching, and by studying both individual SWCNTs in a
  • negative LC matrix and the macroscopic impedance of a liquid crystal cell filled with negative LC doped with SWCNTs. In order to separate the field induced switching of the LC and the SWCNTs, a cells with homogenously aligned LC of negative dielectric anisotropy is employed. The SWCNT switching pattern in
PDF
Album
Full Research Paper
Published 08 Jun 2016

Assembling semiconducting molecules by covalent attachment to a lamellar crystalline polymer substrate

  • Rainhard Machatschek,
  • Patrick Ortmann,
  • Renate Reiter,
  • Stefan Mecking and
  • Günter Reiter

Beilstein J. Nanotechnol. 2016, 7, 784–798, doi:10.3762/bjnano.7.70

Graphical Abstract
  • changed from constant velocity to constant surface pressure: A threshold-value of Π = 0.5 mN/m was used for switching from fast compression to constant surface pressure. When the pressure dropped below the threshold-value, the control unit compressed the film until the surface pressure had re-increased to
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • Republic 10.3762/bjnano.7.65 Abstract We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing
  • for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations
  • delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices. Keywords: antidot lattice; first-order reversal curves; Kerr microscopy
PDF
Album
Full Research Paper
Published 24 May 2016

Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers

  • Christian Ganser,
  • Gerhard Fritz-Popovski,
  • Roland Morak,
  • Parvin Sharifi,
  • Benedetta Marmiroli,
  • Barbara Sartori,
  • Heinz Amenitsch,
  • Thomas Griesser,
  • Christian Teichert and
  • Oskar Paris

Beilstein J. Nanotechnol. 2016, 7, 637–644, doi:10.3762/bjnano.7.56

Graphical Abstract
  • switching operations. (a) Scheme of an AFM cantilever coated with a porous silica film in the fluid cell with deflection readout. (b) Backscattered electron SEM image of the cross section of a silica-coated cantilever. Cantilever deflection as a function of the relative humidity. (a) GISAXS pattern of
PDF
Album
Full Research Paper
Published 28 Apr 2016

Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations

  • Alberto Nocera,
  • Carmine Antonio Perroni,
  • Vincenzo Marigliano Ramaglia and
  • Vittorio Cataudella

Beilstein J. Nanotechnol. 2016, 7, 439–464, doi:10.3762/bjnano.7.39

Graphical Abstract
  • consequence, intriguing nonlinear phenomena, such as hysteresis, switching, and negative differential conductance have been observed in molecular junctions. In conducting molecules, either the center of mass oscillations [9], or thermally induced acoustic phonons [10] can be the source of coupling between
  • of gigahertz. Recently, it has been found that phenomena such as switching, hysteresis, as well as multistability can be observed in NEMS [13]. NEMS have been proposed as high sensitive position and mass sensors [14][15][16][17][18][19][20]. Recently, research at the nanoscale has focused not only on
  • and NEMS. In this review, we analyze the adiabatic regime, realized when the internal vibrational modes have frequencies smaller than the hopping rate. Within this regime, one can observe phenomena such as switching, multistability and hysteresis in molecular junctions or NEMS, and study the physics
PDF
Album
Review
Published 18 Mar 2016

Invariance of molecular charge transport upon changes of extended molecule size and several related issues

  • Ioan Bâldea

Beilstein J. Nanotechnol. 2016, 7, 418–431, doi:10.3762/bjnano.7.37

Graphical Abstract
  • rather than operators. For nonorthonormal basis sets, the nondiagonal overlap matrix SC would replace the identity matrix 1C of Equation 1. Switching between orthonormal and nonorthonormal basis sets leaves the diagonal matrix elements (on-site energies) unchanged while renormalizing the nondiagonal
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
PDF
Album
Review
Published 08 Mar 2016

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • power switches. Each switching process results in a melting of the contact surface and after several hundred events in a degradation of the device properties. Therefore, the chemical and structural properties of these surfaces are of major interest. Since the melting zone is typically macroscopically
PDF
Album
Full Research Paper
Published 28 Dec 2015

Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

  • Riccardo Frisenda,
  • Mickael L. Perrin and
  • Herre S. J. van der Zant

Beilstein J. Nanotechnol. 2015, 6, 2477–2484, doi:10.3762/bjnano.6.257

Graphical Abstract
  • at the interface between the molecule and the metallic electrodes or in the electronic configuration. Finally, to investigate the switching dynamics of OPE3 between the different configurations (1–5) we recorded the conductance of junction 1 as a function of time (see Figure 6a). The traces have been
  • a higher value and then it switches back to the original values shortly thereafter. For increasing voltage, the switching behavior becomes more frequent, resembling telegraph noise. This points to a two-level system characterized by two different conductance values [32]. By comparing the conductance
  • notice that for bias voltages higher than 0.20 V, some of the two-level fluctuations involve configurations 4 and 5b, and four levels of current are present. In conclusion we observed fluctuations induced by the bias voltage, two-level switching between 3 and 5a, above 0.16 V, and four-level switching
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2015
Other Beilstein-Institut Open Science Activities