Search results

Search for "time dependent" in Full Text gives 216 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

  • Horacio V. Guzman,
  • Pablo D. Garcia and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 369–379, doi:10.3762/bjnano.6.36

Graphical Abstract
  • the time-dependent, vertical displacement of the differential beam’s element placed at the x position. To numerically solve the above equation, we replace it by a system of point-mass equations, one for each relevant mode, n = 1, 2, etc. as described by [16][44][45] with m = 0.25·mc and 1 + cos (κn
  • Paulo [51] combines the relationship between the stress and strain given by the Kelvin–Voigt model and the sample deformation given by Hertz contact mechanics as where η is the viscosity coefficient. Standard linear solid viscoelastic model (SLS) The SLS model is considered to represent the time
  • -dependent behavior of a viscoelastic material without residual strains [52]. The model characterizes a viscoelastic material as an elastic element, which is coupled in series with a system that includes another elastic element and a viscous response. The equivalent mechanical system is a spring in series
PDF
Album
Full Research Paper
Published 04 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • MnO and Fe3O4, again, those with an elongated shape (Au@MnO and Au@Fe3O4, Figure 1b and Figure 1c) led to a stronger reduction of ATP levels than the spherical ones in a time-dependent manner. In general, the MnO-based nanoparticles and nanoparticles with NH2-functionalization had a stronger impact on
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • surface functionalization and binding of other molecules of interest may remain completely similar to that of unlabeled particles [79][83][84]. Another disadvantage when using fluorescent dyes is their time-dependent photobleaching, which results in a more or less rapid fading of the fluorescent yield [85
PDF
Album
Review
Published 23 Jan 2015

Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes

  • Julia M. Tan,
  • Jhi Biau Foo,
  • Sharida Fakurazi and
  • Mohd Zobir Hussein

Beilstein J. Nanotechnol. 2015, 6, 243–253, doi:10.3762/bjnano.6.23

Graphical Abstract
  • with the free drug (LD) in a dose- and time-dependent manner at concentrations of 0 μg mL−1 (control) to 50 μg mL−1. The LD compound demonstrates a sustained decrease in cell viability with increasing concentration at each time point. This observation is comparable with the results published by
PDF
Album
Full Research Paper
Published 22 Jan 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • migration, proliferation and tissue formation [19][20]. Mechanical behavior of living cells can be monitored spatially resolved in a concentration and time dependent manner using scanning probe techniques. It is possible to investigate local cellular elastic properties under physiological conditions using
PDF
Album
Full Research Paper
Published 20 Jan 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • electrostatic measurements in both ionically-active and -inactive liquids. EcFM is employed to detect the bias- and time-dependent electrostatic and electrochemical forces between probe and sample under ambient, non-polar (ionically-inactive decane) and polar (ionically-active isopropanol, milli-Q water and
  • aqueous NaCl) environments. The measurement of bias- and time-dependent ion dynamics allows different electrokinetic phenomena to be separated and a set of environmental and measurement timescale requirements for determining CPD under conditions comparable with KPFM to be delineated. Finally, the
  • electrostatic response, or more generally when the force experienced by the system is governed purely by the time-independent Maxwell stress tensor directly related to the charge density between probe and sample [58]. The data can be presented as an EcFM spectra representing the bias- and time-dependent for a
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

  • Miao Yu,
  • Nico Strohmeyer,
  • Jinghe Wang,
  • Daniel J. Müller and
  • Jonne Helenius

Beilstein J. Nanotechnol. 2015, 6, 157–166, doi:10.3762/bjnano.6.15

Graphical Abstract
  • mouse kidney fibroblast showed very low adhesion to collagen I and laminin 332, but high adhesion to fibronectin. This indicates that cell lines express different patterns of CAMs. Besides the cell line-dependent adhesion forces, contact time-dependent strengthening also differed between cell lines
PDF
Album
Full Research Paper
Published 14 Jan 2015

Functionalization of α-synuclein fibrils

  • Simona Povilonienė,
  • Vida Časaitė,
  • Virginijus Bukauskas,
  • Arūnas Šetkus,
  • Juozas Staniulis and
  • Rolandas Meškys

Beilstein J. Nanotechnol. 2015, 6, 124–133, doi:10.3762/bjnano.6.12

Graphical Abstract
  • attachment of gold nanoparticles to fibrils formed by α-SynC141 (Figure 3). The assembly process was found to be time dependent. After 24 hours of incubation, neutravidin-conjugated nanoparticles were found evenly scattered among the biotinylated fibrils. A number of fibrils involved in the nanoladder
PDF
Album
Full Research Paper
Published 12 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • different nanostructured MnOx species via one calcination process. This is advantageous for the investigation of the properties of the manganese oxides, as it rules out any synthesis-caused effects. The temperature- as well as the time-dependent phase transformation processes occurring during the oxidation
  • at ν = 50 mV/s. Supporting Information The supporting information features the powder XRD pattern of Mn(II) glycolate particles after 1 h of synthesis at 170 °C in addition to in situ XRD patterns of the time-dependent oxidation of Mn3O4 to Mn5O8 at 400 °C in O2. Supporting Information File 14
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • regime from 10−0.5 to 10−1.5 Hz, as described by Giaever et al. [29], which corresponds to slopes ranging from −2.1 to −3 s−1 for fully motile epithelial cells exhibiting 100% micromotion and 0 to −1 for bare electrodes as well as fixed cells immersed in buffer. The time-dependent slopes were recorded
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • selective excitation of the focal volume [93][94]. Nevertheless, it remains challenging to extend the technique to time-dependent measurements for clinically relevant volumes, reaching beyond small animals used as testing systems at the moment [95][96][97][98]. Surface modification of Janus particles The
PDF
Album
Review
Published 05 Dec 2014

Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 2149–2163, doi:10.3762/bjnano.5.224

Graphical Abstract
  • characterization with AFM. Results and Discussion Model descriptions Linear Maxwell model The Linear Maxwell model is one of the simplest spring–dashpot sets. It consists of a spring arranged in series with a dashpot (Figure 1a). This model is known for successfully describing stress relaxation (time-dependent
  • drop in stress under a constant strain) and for failing to describe creep (time-dependent strain relaxation under a constant stress). The latter precludes the existence of a mechanism for surface recovery upon deformation. As a consequence, the sample continuously yields to lower positions when
  • capture both stress relaxation and creep compliance, which are basic time-dependent properties exhibited by viscoelastic surfaces. It is comprised by a Linear Maxwell arm arranged in parallel with a spring (Figure 3a) and has been recently used in the context of multifrequency and spectral inversion AFM
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014

Dissipation signals due to lateral tip oscillations in FM-AFM

  • Michael Klocke and
  • Dietrich E. Wolf

Beilstein J. Nanotechnol. 2014, 5, 2048–2057, doi:10.3762/bjnano.5.213

Graphical Abstract
  • solvable. As a first step, the x-dependence of the z-component of the force is neglected by approximating Fz(x, z) ≈ Fz(x0, z). Then the solution z(t) of Equation 1 is independent of Equation 2. This leads to an effectively time-dependent lateral force Fx(x, z(t)) for Equation 2. As the interaction between
PDF
Album
Full Research Paper
Published 10 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • distribution of PLLA nanoparticle diameters as determined from 164 individual particles after HPF processing and TEM examination. Time-dependent UV–vis adsorption measurement monitoring the formation of the FeCl(H2O)52+ complex upon addition of HCl to pristine magnetite particles and magnetite-decorated PLLA
PDF
Album
Full Research Paper
Published 29 Oct 2014

Electronic and electrochemical doping of graphene by surface adsorbates

  • Hugo Pinto and
  • Alexander Markevich

Beilstein J. Nanotechnol. 2014, 5, 1842–1848, doi:10.3762/bjnano.5.195

Graphical Abstract
  • until equilibrium is reached, Eredox = EF, making graphene n- (p-)type doped. In contrast to electronic doping, which occurs instantaneously, electrochemical doping is a time-dependent process, which is affected by the rate of the reaction and diffusion rates of participating species. Therefore, in the
PDF
Album
Review
Published 23 Oct 2014

Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

  • Claudia Strobel,
  • Martin Förster and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2014, 5, 1795–1807, doi:10.3762/bjnano.5.190

Graphical Abstract
  • -inflammatory effects, a slight pro-thrombotic impact, and an increase of reactive oxygen species after nanoparticle exposure were observed with increasing incubation time. For SiO2 nanoparticles, concentration- and time-dependent effects on the metabolic activity as well as pro-inflammatory reactions were
  • (dimethylethyl)phenyl)-N’-(3-(triethoxysilyl)propyl)perylene-3,4,9,10-tetracarboxylic acid diimide label); magnification: 20×. CeO2 nanoparticles revealed concentration- and time-dependent effects on the cellular adenosine triphosphate (ATP) level. Immortalized human microvascular endothelial cells (HMEC-1) and
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2014
Graphical Abstract
  • behavior of the probe–sample forces, although significant progress has already been achieved by using multi-frequency methods [9]. The contact models used so far are not true viscoelastic models, since they do not exhibit time-dependent stress and strain relaxation, but they have been shown to be
  • solution of the cantilever equations of motion in the form of boundary conditions at the tip [4][5]. This model can reproduce time-dependent creep compliance (time-dependent strain relaxation under a constant stress) with high accuracy, but not stress relaxation (time dependent drop in stress under a
  • dissipated during successive tip–sample impacts (this dissipation was calculated by integrating numerically the area of the dissipation loops), and panel (c) shows a few examples of successive tip–sample impacts, illustrated as time-dependent forces. Interestingly, even in the case in which the peak
PDF
Album
Full Research Paper
Published 26 Sep 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • time-dependent trajectory of the tip and individual eigenmodes through simulation of ideal cantilevers. Figure 2a illustrates typical tip trajectories simulated for pentamodal operation when imaging a polymer sample. Here the first eigenmode free amplitude is 80 nm and the higher mode free amplitudes
  • carried out and the apparent robustness of our results, the non-uniformity of successive tip–sample impacts, the nonlinear coupling of the various eigenmodes, as well as time-dependent tip–sample behaviors such as viscoelasticity suggest that unless single-cycle techniques [16][18][30] can be implemented
PDF
Album
Full Research Paper
Published 25 Sep 2014

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • . The number of intracellular particles varied considerably from cell to cell. About 30 cells were evaluated per time point, thus resulting in more than 360 cells in total. The statistics for the number of taken up particles per HUVEC or HeLa cells are plotted in Figure 3. A time-dependent increase of
  • plays an important role in our findings. Cell division is probably among the dominant causes for the observed dilution of nanoparticles. Yet, other time-dependent parameters may also influence the uptake dynamics. For example, degradation of intracellular particles, exocytosis, cell uptake behavior (e.g
PDF
Album
Full Research Paper
Published 23 Sep 2014

Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

  • Nicolas Thewes,
  • Peter Loskill,
  • Philipp Jung,
  • Henrik Peisker,
  • Markus Bischoff,
  • Mathias Herrmann and
  • Karin Jacobs

Beilstein J. Nanotechnol. 2014, 5, 1501–1512, doi:10.3762/bjnano.5.163

Graphical Abstract
  • the order of a fraction of a second) does not influence the adhesion force. The snap-in separation, however, decreases with increasing tip velocity (Figure 5B), as does the snap-in force (Figure 5C), which is a first indication to a time-dependent contact-process, which will be detailed in the
PDF
Album
Full Research Paper
Published 10 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • organs to the kidneys was observed. These findings are supported by a study in rats describing a time-dependent increase in the cadmium concentration over 30 days after injection of QDs in the kidneys indicating that these nanocrystals are slowly degraded in vivo [11]. In summary, despite the breakdown
  • metals such as cadmium released from QDs or iron released from SPIOs did not acutely influence the inflammatory status of the liver. However, specific target cells can be of transient relevance and heavy metals released after QDs or SPIOs uptake may traverse through different target cell types in a time
  • -dependent manner. Given the limitation of the study that gene expression of pro-inflammatory markers was analysed 48 h (Figure 3) or 4 h (Figure 6) after the injection of nanoparticles, we cannot exclude that different target cells in different organs such as the kidney, spleen, adipose tissues or the bone
PDF
Album
Full Research Paper
Published 02 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • . Comprehensive experimental approaches, such as quantifying cellular metabolic activity, microscopic observation of cell morphology, and high-throughput cell analysis revealed a dose- and time-dependent toxicity primarily upon exposure with ASP30 (Ø = 30 nm). Albeit smaller (ASP20, Ø = 20 nm) or larger particles
  • the Caco-2 cells following exposure to the different ASP (Figure 2). Exposure to ASP30 or ASP30L under serum free conditions induced dose- and time-dependent significant morphological changes, such as loss of a structured cell shape, disruption of the monolayer, and loss of adhesion, which is
  • cellular enzymes that reduce the tetrazolium dye MTT to its insoluble formazan in living cells. Compared to untreated control cells, exposure to ASP30 was found to significantly reduce the cell vitality in a dose- and time-dependent manner (Figure 3A), whereas no effects were observed upon treatment with
PDF
Album
Full Research Paper
Published 27 Aug 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • . As a release of cytokines could not be detected with ELISA we assume that this is a transient and acute effect, which decreases to normal levels within a short time. Dependent on how NPs are applied, i.e., either by submerged or ALI conditions, different toxicological results can be obtained [60
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • , which points to a deposition that is influenced by proximity effects [2]. In addition to the dose dependence, the growth time-dependent appearance of the structures was investigated. Figure 3 compares SEM images of square deposits fabricated by EBID and autocatalytic growth, using Co(CO)3NO as precursor
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

  • Jan-Henning Dirks

Beilstein J. Nanotechnol. 2014, 5, 1160–1166, doi:10.3762/bjnano.5.127

Graphical Abstract
  • account the viscosity of the mediating fluid layer. Two parallel smooth surfaces with a distance of h sliding at a velocity v relative to each other generate the friction force where ηeff is the effective viscosity of the mediating fluid layer and A the size of the contact area. Again, similar to the time
  • -dependent viscous adhesion (Equation 2), the v/h-term in Equation 5 shows that a simple fluid mediated system at rest should not be able to generate any static friction. Based on viscosity estimations from dewetting processes (40 to 150 mPa), Federle et al. showed that the hydrodynamic friction forces
PDF
Album
Video
Review
Published 28 Jul 2014
Other Beilstein-Institut Open Science Activities