Search results

Search for "cobalt" in Full Text gives 183 result(s) in Beilstein Journal of Nanotechnology.

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

  • Miriam Jaafar,
  • Oscar Iglesias-Freire,
  • Luis Serrano-Ramón,
  • Manuel Ricardo Ibarra,
  • Jose Maria de Teresa and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2011, 2, 552–560, doi:10.3762/bjnano.2.59

Graphical Abstract
  • Discussion In the present work we have studied cobalt nanowires grown by focused-electron-beam-induced deposition (FEBID). The sample growth was performed in a commercial dual beam® equipment using a field emission scanning electron microscope with Co2(CO)8 as gas precursor. The substrate material used in
  • μm, the width of the wires varies between 125 nm and 2 μm, and the thickness between 50 nm and 200 nm. An appropriate selection of the growth parameters leads to high-purity deposits (over 95% Co) with magnetic properties similar to those of bulk cobalt [35] and good domain wall conduit behavior [36
  • -plane coercive field higher than the magnetic field values to be applied in the experiments. In addition, micromagnetic simulations have been performed by means of the object oriented micromagnetic framework (OOMMF) code [41] and with the polycrystalline cobalt values [37] and a cell size of 5 nm. As
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2011

Magnetic interactions between nanoparticles

  • Steen Mørup,
  • Mikkel Fougt Hansen and
  • Cathrine Frandsen

Beilstein J. Nanotechnol. 2010, 1, 182–190, doi:10.3762/bjnano.1.22

Graphical Abstract
  • ferromagnetic cobalt covered by a shell of antiferromagnetic CoO [4]: This effect is nowadays utilized in read heads in computer hard disk drives. In a neutron study of Fe3O4/CoO multilayers, van der Zaag et al. [5] found that the Néel temperature of CoO was enhanced due to the exchange interaction with
PDF
Album
Review
Published 28 Dec 2010

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • applications. Doped-ferrite nanoparticles The magnetization of ferrite nanoparticles can be further enhanced by doping the ferrite with ferromagnetic elements such as manganese (Mn), cobalt (Co) or nickel (Ni) [23][27][45]. Among the singly-doped ferrite MNPs, MnFe2O4 nanoparticles were found to exhibit the
PDF
Album
Review
Published 16 Dec 2010

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism

  • Olivier Margeat,
  • Marc Respaud,
  • Catherine Amiens,
  • Pierre Lecante and
  • Bruno Chaudret

Beilstein J. Nanotechnol. 2010, 1, 108–118, doi:10.3762/bjnano.1.13

Graphical Abstract
  • organometallic approach [17]. We have, for example, shown that cobalt NPs prepared by the decomposition of an organometallic precursor under mild conditions in the presence of a stabilising polymer exhibit physical properties similar to those of free cobalt clusters [18]. In this article, we report the chemical
PDF
Album
Full Research Paper
Published 03 Dec 2010

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • thin cobalt film of 20 nm thickness was grown on top of the NPs by ion-beam sputtering from a Co target at 3.9 × 10−4 mbar with a base pressure of 1 × 10−8 mbar. To prevent oxidation of the Co surface, the sample was finally capped with a 3 nm thick layer of Cu. A reference composite sample was
PDF
Album
Full Research Paper
Published 01 Dec 2010

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • the C-terminal region of Mms6. In this study, cobalt ferrite nanoparticles not known to occur in magnetotactic bacteria were synthesized. Cobalt and iron salts were added to the c25-mms6 mixture and incubated at 4 °C. The mixture was stirred under argon flux until it reached room temperature and then
  • diagrams of the bulk materials. In order to illustrate the growth dynamics and material distribution along the particle volume, we consider two miscible compounds, A1 and A2, such as iron and cobalt carbonyl. The result should fall into the classes 1 to 3. Precursors decay at different decay rates ki which
  • magnetization MS, and is given by where µ0 is the vacuum permeability. In this work, we focus on particles of sizes between 5 to 20 nm; the single domain limits of cobalt and iron nanocrystals are on this size scale. The crystalline microstructure introduces energetically favorable easy axes and directions of
PDF
Album
Review
Published 22 Nov 2010

Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles

  • Damien Alloyeau,
  • Christian Ricolleau,
  • Cyril Langlois,
  • Yann Le Bouar and
  • Annick Loiseau

Beilstein J. Nanotechnol. 2010, 1, 55–59, doi:10.3762/bjnano.1.7

Graphical Abstract
  • thickness of 10 nm was deposited. On the top of the amorphous carbon, a 3 nm layer of a-Al2O3 was deposited. Then, cobalt and platinum were alternatively deposited using pure Co and Pt targets irradiated with an energy density of 4.4 J/cm2 in order to obtain Co50Pt50 NPs. The crystalline structure of as
PDF
Album
Full Research Paper
Published 22 Nov 2010

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • recombination rate is lower than the rate of electron transfer to adsorbed molecules. There are reports on the enhancement of visible light absorption in ZnO by doping with, e.g., cobalt (Co) [18], manganese (Mn) [19], lead (Pb) and silver (Ag) [16], etc. Photocatalytic activity comparable to doped ZnO was also
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities