Search results

Search for "defects" in Full Text gives 674 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • -type CuO semiconductor is ≈1.2 eV [6]. The application of CuO covers the fields of photocatalytic degradation of organic contaminants [7], photocatalytic reduction of CO2 [8][9], photocatalytic splitting of water [10], etc. Nanoscale CuO has been widely studied owing to its increased surface defects
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • monolayer is presented by Rawal et al. [25] to study the effect of defects in MoS2 on the catalytic activity of the supported nanoparticles. They observe that the magnitude of binding energy and charge transfer follows the trend Cu > Ag > Au. On the pristine surface the binding energies of the nanoparticles
  • particular when the monolayer is defect-rich. MoS2 is known to be naturally high in defects [21][32], in particular S vacancies. It has been predicted that S vacancies in a MoS2 monolayer are most stable when they occur in a row, with a decrease in the vacancy formation energy as the number of vacancies
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • local defects of the flat surface (initially existing or created by the irradiation) initiate the formation of ripple trains [8][25]. If a nanorod is exposed to the irradiation, then the edges between the side facets and the ends can play the role of such surface defects. Our experiment does confirm the
  • role of boundary surface defects in ripple formation. In Figure 6c one can see the formation of two to three ordered nanoripples oriented parallel to the end edge. A similar mechanism influences the ripple formation at higher energy and fluences, i.e., when the ripple wavelength becomes larger (Figure
PDF
Album
Full Research Paper
Published 24 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • enable entities smaller than these gaps to leave the bloodstream. Secondly, defects of the lymphatic system in tumors prevent these macromolecular therapeutics to be cleared from the tumor, giving them additional time to release their active cargo. This was the first example of targeting tumor tissues
PDF
Album
Review
Published 15 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • defects, which can then result in a decreased tensile strength. On the other hand, the filler can reinforce the polymer matrix, and this reinforcing effect becomes more obvious at higher concentrations (≥7 vol %). The nonlinear behavior of the tensile strength is then a consequence of these effects. With
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • N-rGO sample (Figure 2b) shows D, G and 2D band at, respectively, at 1354, 1581, and 2843 cm−1. The D-band is associated with the breathing modes of six-membered carbon rings that are activated by defects and structurally disordered, and the G-band originates from in-plane vibrations of sp2
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Influence of the epitaxial composition on N-face GaN KOH etch kinetics determined by ICP-OES

  • Markus Tautz,
  • Maren T. Kuchenbrod,
  • Joachim Hertkorn,
  • Robert Weinberger,
  • Martin Welzel,
  • Arno Pfitzner and
  • David Díaz Díaz

Beilstein J. Nanotechnol. 2020, 11, 41–50, doi:10.3762/bjnano.11.4

Graphical Abstract
  • variation in dislocation density. The bottommost 2D GaN layer was increased in thickness from 300 nm (A) to 1000 nm (B). A change to 3D growth conditions was applied to reduce defects caused by bending of dislocations into lateral direction. It is well known that 3D growth can be initiated by various growth
PDF
Album
Full Research Paper
Published 03 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • formation of C–C bonds is favored over the formation of C–N bonds. At a given reaction temperature, the N content increases with higher ammonia concentrations up to a certain maximum, however, only a limited amount of N can be incorporated. Exceeding this point leads to the formation of defects causing
  • -hybridized carbon atoms inside the graphite layers; the D band is associated to the A1g in-plane breathing vibration mode occurring at the edges of sp2-hybridized carbon domains, which appear for structural defects and disordered structures. A relative degree of graphitization can be evaluated by the ratio
  • ., ca. 860 cm−1 and ca. 2440 cm−1 is described in detail by Kawashima and Dresselhaus and co-workers [46][48]. Higher N contents result in more defects of the carbon lattice and lead to an increase of the AD/AG ratio. Accordingly, NCS-700 and g-NCS-700, which exhibit the highest N content, show the
PDF
Album
Full Research Paper
Published 02 Jan 2020

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • solution and Ag nanoparticles are formed on the different positions of the single crystal copper surface. The single crystal copper surface becomes rougher and more defects are formed after the etching process. Furthermore, the defects of the internal cavities and the pile-ups are much more than on the
PDF
Album
Full Research Paper
Published 13 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • -fold twinned structure prevents propagation of critical defects, leading to dislocation pile up that may lead to sudden stress release, which is observed as an abrupt plastic event. Moreover, we found that if the NWs are coated with alumina, the abrupt plastic event is not observed and the NWs can
  • propagation of dislocation defects. For the pentagonal NWs, the propagation of these defects is hindered by the five twin boundaries inside these structures, leading to the accumulation of dislocations at the twin boundaries [43]. In the cantilevered beam bending configuration, this accumulation is more
  • at the twin boundaries leads to the brittle fracture-like onset of plastic deformation. The free surface of the NW facilitates the nucleation of defects, such as dislocations in an otherwise practically defect-free pentagonal NW structure. Additional preliminary experiments with alumina-coated Ag NWs
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • appropriately functionalized OSC molecules provides a suitable method to determine intrinsic mobilities of charge carriers in OSC thin films. In particular, this method is rather insensitive with regard to influence of grain boundaries and other defects, which hamper the application of conventional methods for
  • ]. Domain boundaries, contaminations and defects have a pronounced, negative effect on charge carrier mobility. This fact calls for measurements on low-defect density samples, preferentially macroscopic single crystals, to determine the intrinsic mobilities. This approach, however, is difficult due to the
  • conductive islands used in previous works [18][28]. Note also that the nanografting of the insulating HDT into the previous fabricated PAT SAMs with high structural quality ensures that the density of defects within the OSC islands is very low. Previous STM investigations of HBC-thiolate islands embedded in
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • under acidic conditions [42]. In our previous work [12], we have reported a two-step method for preparation of a responsive surface layer on oligoperoxide-functionalized BNNTs, where amino groups on BNNTs form at the ends and defects. Additional amine groups can be easily introduced with ammonia plasma
  • BNNT surface via a simple two-step process as outlined in Scheme 1 and described in detail in the Experimental section. The first step: a multifunctional radical initiator (oligoperoxide) was grafted to the BNNT surface by means of interaction of amino groups (at the defects on the BNNT surface) with
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • absorber, the development of fabrication techniques to produce high quality Sb2S3 absorber layers, with few grain boundaries and intra-grain defects is essential to enable commercialization of Sb2S3-based solar cells [14][38]. The record PCE of 5.77% was achieved with a planar TiO2/Sb2S3/P3HT cell by
  • layers, assuming to be primarily due to a uniform distribution of defects. Upon scribing large cells (>100 mm2) into several smaller ≈0.1 mm2 cells, all photoconversion parameters of the cells with USP-grown Sb2S3 ended up showing values like those of individual cells with similar sizes, as has
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • ; Introduction Silicon carbide (SiC) is an established material for many electronic devices and has also been considered for photonics applications recently. After the improvement of the purity of the material and the isolation of point defects (primarily vacancies), SiC has been considered to host physical
  • systems for quantum devices such as single-photon sources and spin–photon interfaces for quantum interconnects [1][2][3]. Points defects or color centers in SiC are considered as alternative candidates for quantum applications such as solid-state quantum bits [4][5], spin–photon interfaces [6], single
  • integrated photonics applications. Most of SiC point defects were found more than one decade ago with methods based on measuring ensemble photoluminescence (PL) [20], i.e., the light emission after the absorption of photons, and electron paramagnetic resonance (EPR) [21], which reveals unpaired electrons
PDF
Album
Full Research Paper
Published 05 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • , enhancing composite resistance and reducing film defects. Ultimately, we achieved an outstanding photoelectric performance of the PVP-doped PSCs shown by a power conversion efficiency (PCE) of 15.19% and an average steady-state PCE of 14.55% under AM 1.5G simulated solar irradiation with a shadow mask of
  • characterization methods show that PVP was effective in inhibiting the recombination of carriers, enhancing the composite resistance, reducing film defects, and boosting the photoelectric performance of the PSCs. With a PCE of 15.19% and an average steady-state PCE of 14.55% under AM 1.5G simulated solar
  • the PSCs increases from 0.90 to 0.98 V and the PCE of the PSCs is found to increase from 13.33% to 15.19%. Through the combination of PVP and lead nitrate, the morphology of the perovskite film was improved, film defects were reduced, the interface contact was improved, and the carrier recombination
PDF
Album
Full Research Paper
Published 05 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • surface of the cit-AgNPs such as surface defects and kinks [36][37] and will increase the number of available positively charged adsorption sites for anionic analytes. As highlighted by Attard, the polarizability of the adion will influence greatly its surface activity [35]. This explains why cations with
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • networks are formed by the combination of amorphous carbon layer and rGO. Secondly, the existence of a great number of defects in the ultrathin MoS2 nanosheets leads to partial breaking of the catalytically inert basal planes, yielding additional active edge sites. Thirdly, annealing of the C-MoS2/rGO
  • MoS2 [27][28][29]. The crystal nanosheets along the edge are irregular, which can also be ascribed to the successful introduction of rich defects, as indicated by the arrows in the images. Therefore, a better energy storage performance may be anticipated from the double modified defect-rich MoS2
  • designing materials that overcome the inherent defects of lithium–sulfur batteries. The high-resolution C 1s spectrum can be deconvoluted into four peaks, as shown in Figure 4f. The peak at 284.5 eV with high intensity indicates that most C atoms in the composites can be assigned to sp2-hybridized carbon
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • data are similar for both devices, which might suggest that the possible fabrication defects in the stack architecture are comparable in both devices [34]. The Rrec values rapidly decrease when the applied bias increases from 0.0 V to near Voc, as shown in Figure 8d. This behavior is due to the fact
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • caprylic/capric triglyceride [9]. Dermal application – main key features of SmartLipids High loading capacity and firm inclusion of active agents The unordered “chaotic” matrix state of SmartLipids provides enough defects to accommodate distinctly higher amounts of active agents compared to SLNs and NLCs
PDF
Album
Review
Published 04 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • the oxygen molecule absorption edge and can selectively remove the ND surface defects. A decrease in the FWHM of the ODMR spectra close to 15% and an increase in the T2 time of almost 25% are observed, with a maximum T2 of 2 µs. This technique is quite simple and produces better magnetic imaging
  • IONPs was also performed. The NV-based 3D magnetic imaging method was then applied to diagnostic imaging of liver specimens (tissue) from a model of hepatic iron overload in a mouse and of dynamic endocytic uptake of IONPs in live mammalian cells. Magnetometry based on the electron spin of NV defects in
  • -relaxation phenomena between NVs and other paramagnetic defects in diamond was used in [59] to detect the presence of the well-known electron spin from the N substitutional centers (P1) and the NV neutral charge state. Both of these paramagnetism defects cannot be optically detected. Only the negative charge
PDF
Album
Review
Published 04 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • defects such as oxygen vacancies. The absorption spectrum of the 2-S0.5 sample shows a peak at 460 nm. The visible-light absorption of the samples with RS/Ti ≥ 1, where S2− replaces O2− and S6+ replaces Ti4+, is caused by cooperative effects of the oxygen vacancies and the substituted S elements. The
  • observed for the S-doped samples at 180 °C. The XPS results indicate that there are various impurities and defects in the S-doped TiO2, such as Ov (Ti3+), –OH, and S impurities; finally, the change of their proportion is most likely the reason for the change in the luminescence intensity. Figure 10 shows
  • concentration, because S has more outer shell electrons than Ti. If the electrons and holes were both transferred to the surface of the TiO2 particles, the •O2− signal would be stronger than the •OH signal; however, this is not the case, which could be due to trapping of electrons by impurities or defects
PDF
Album
Full Research Paper
Published 01 Nov 2019

Ion mobility and material transport on KBr in air as a function of the relative humidity

  • Dominik J. Kirpal,
  • Korbinian Pürckhauer,
  • Alfred J. Weymouth and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Graphical Abstract
  • and recorded the evolution of these defects as a function of the time. We observed an exponential decay of the size of the defects and material accumulations, and from this data we determined energy barriers to dissolution and aggregation of approximately 0.9 eV. Keywords: ambient conditions; atomic
  • observation of the change and evolution of the KBr surface as a function of the relative humidity. Therefore, several artificial defects in the range of some to tens of nanometers were created and observed over a period of a few hours up to a few weeks while the relative humidity was kept within a certain
  • small and sharp splinter of a smashed sapphire bulk crystal was used as a tip. Sapphire is a very hard material, it is hydrophobic with a contact angle to water above 80°[20], and it is chemically inert [21]. The high hardness allows us to create large artificial defects in our sample (as described
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population. Keywords: Cu2ZnSnS4 (CZTS); Cu3SnS4 (CTS); green chemistry; kuramite; photovoltaic materials; solvothermal synthesis
  • (probably enhanced by the Au coating) ascribed to surficial structural defects of the platelets or to a new growing facet. Electronic microprobe analysis (EMPA)/wavelength dispersion spectroscopy (WDS) EMPA analysis showed and confirmed that the molar ratios between Cu, Zn, Sn, S and Cl in the sample does
  • marked dampening of the second shell signal. This revealed significant differences between the Sn and Cu local environments, which is probably due to the small crystallite size and the high concentration of defects (in agreement with the XRD broadening). The presence of a second coordination shell with
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • intrusion data shown in Figure 5 demonstrate the absence of pores in the range from 5 nm to ≈1 μm, suggesting that the amount of possible defects in the crystals is negligibly small. The textural data of all titanosilicates prepared for catalytic studies are summarized in Table 1. The microporous nature and
  • high crystallinity of Na,K-ETS-10 is further confirmed by TEM (Figure 6) demonstrating high order of the titanosilicate framework with parallel Ti nanowires showing no visible defects on the length scale of hundreds of nanometers. The spacing between adjacent nanowires showed good agreement with
  • not notably affect the crystallinity, which is fully restored after the calcination (see Table S10 of Supporting Information File 1). However, partial removal of the framework has led to the appearance of crack-looking defects on the surface of ETS-10, less noticeable on the crystals treated for 30
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019
Other Beilstein-Institut Open Science Activities