Search results

Search for "density-functional theory" in Full Text gives 236 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

  • Pascal R. Ewen,
  • Jan Sanning,
  • Tobias Koch,
  • Nikos L. Doltsinis,
  • Cristian A. Strassert and
  • Daniel Wegner

Beilstein J. Nanotechnol. 2014, 5, 2248–2258, doi:10.3762/bjnano.5.234

Graphical Abstract
  • transfer; density-functional theory; frontier orbitals; hybridization; OLED; Pt(II) complex; scanning tunneling microscopy; scanning tunneling spectroscopy; triplet emitters; Introduction Organic light emitting diodes (OLEDs) based on phosphorescent Ir(III) or Pt(II) complexes (also referred to as triplet
  • (phosphorescent) triplet emitters both in monomeric and aggregated form [31][32]. We identified a number of occupied and unoccupied frontier orbitals. Comparison with density functional theory (DFT) calculations allows the unambiguous assignment of all MOs from the HOMO–2 to the LUMO+2. We found that the
PDF
Album
Full Research Paper
Published 26 Nov 2014

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • electronic structure has been predicted by density functional theory calculations using the generalized gradient approximation. From the overlap of the empty bands in NbS2 with the filled valence band of PbSe, the authors concluded that “only a small fraction of an electron’s charge is transferred per atom
PDF
Album
Review
Published 19 Nov 2014

Nanomanipulation and environmental nanotechnology

  • Enrico Gnecco,
  • Andre Schirmeisen,
  • Carlos M. Pina and
  • Udo Becker

Beilstein J. Nanotechnol. 2014, 5, 2079–2080, doi:10.3762/bjnano.5.216

Graphical Abstract
  • processes. For example, the photocatalytic degradation of pollutants can be interpreted using density functional theory. On a different scale, AFM measurements in liquid environments can be supported by advanced contact mechanics models including the squeeze-out of wetting fluids. Adhesion of fluorite
PDF
Editorial
Published 11 Nov 2014

Electronic and electrochemical doping of graphene by surface adsorbates

  • Hugo Pinto and
  • Alexander Markevich

Beilstein J. Nanotechnol. 2014, 5, 1842–1848, doi:10.3762/bjnano.5.195

Graphical Abstract
  • demonstrated for various atomic and molecular adsorbates. Electropositive elements that easily donate their outer shell electrons are expected to be n-type dopants. Indeed, density functional theory (DFT) calculations predicted group I–III metals to be efficient electron donors for graphene [25][26][27][28
  • calculations based on density functional theory demonstrated that a p-type graphene can be obtained through charge transfer between the TCNE molecule and graphene [38]. Electrochemical dopants It was observed that the exposure of graphene to a humid atmosphere causes p-type doping whereas exposure to toluene
PDF
Album
Review
Published 23 Oct 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • understand the trends found by experimental and atomistic modeling studies. More recently, significant understanding of the relationships between structure, chemistry and electronic structure has been obtained from first-principles calculations based on density functional theory. From a theoretical
  • even the smallest particles that were realized experimentally (about 1000 atoms for ca. 3 nm). Such sizes are close to the practical limits of present-day first-principles density functional theory implementations. Various full-DFT implementations by using localized basis sets such as Aimpro [17][44
  • , are convenient in the case of free-standing nanocrystals, both because they can be combined with real-space boundary conditions and because they result in sparse Hamiltonian and overlap matrices that can be efficiently diagonalized. Notwithstanding, many implementations of density functional theory
PDF
Album
Review
Published 16 Oct 2014

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition
  • dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials. Keywords: band structure; density functional theory (DFT); low-dimensional electronics; metal-organic frameworks (MOFs); MIL-47; Introduction Metal-organic frameworks (MOFs) present a class of materials located
  • Density functional theory calculations Density functional theory (DFT) calculations are performed within the projector augmented wave (PAW) method as implemented in the “Vienna ab initio Simulation Package” (VASP) while using the generalized gradient approximation (GGA) functional as constructed by Perdew
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Restructuring of an Ir(210) electrode surface by potential cycling

  • Khaled A. Soliman,
  • Dieter M. Kolb,
  • Ludwig A. Kibler and
  • Timo Jacob

Beilstein J. Nanotechnol. 2014, 5, 1349–1356, doi:10.3762/bjnano.5.148

Graphical Abstract
  • for the different Ir surface orientations, the adsorption of more than 0.5 ML oxygen causes the formation of nano-pyramids exhibiting (110) and {311} faces to be thermodynamically more stable than the original Ir(210) substrate [19][23]. Based on density functional theory calculations it was predicted
PDF
Album
Full Research Paper
Published 25 Aug 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • study of borohydride-based solid state electrolytes was reported by Higashi et al. [37]. Guided by their first-principles calculations based on density functional theory (DFT), they experimentally investigated the conduction of magnesium ions in both Mg(BH4)2 and Mg(BH4)(NH2). The selection of these
PDF
Album
Review
Published 18 Aug 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • leads to a same sublattice configuration for all impurities in a domain. Through density functional theory (DFT) calculations involving a graphene nanoribbon on a Cu(111) substrate, aiming to reproduce experimental conditions, a thorough investigation into the energetic favourable position of single
PDF
Album
Review
Published 05 Aug 2014

Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

  • Peter Feng,
  • Muhammad Sajjad,
  • Eric Yiming Li,
  • Hongxin Zhang,
  • Jin Chu,
  • Ali Aldalbahi and
  • Gerardo Morell

Beilstein J. Nanotechnol. 2014, 5, 1186–1192, doi:10.3762/bjnano.5.130

Graphical Abstract
  • -principles computations [13] and hybrid density functional theory calculations with van der Waals correction [14], Chen and Zhang show that polar boron nitride (BN) nanoribbons can be favorably aligned via substantial hydrogen bonding at the interfaces, which induces significant interface polarizations and
PDF
Album
Full Research Paper
Published 31 Jul 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
  • +ED molecule length of 12.6 Å, and also below the somewhat lower GPC value of 6.5 Å per cycle expected based on the density functional theory calculations carried out by the group. The film growth was observed to be linear. The films were stable in ambient air and when annealed at least up to 250 °C
PDF
Album
Review
Published 22 Jul 2014

DFT study of binding and electron transfer from colorless aromatic pollutants to a TiO2 nanocluster: Application to photocatalytic degradation under visible light irradiation

  • Corneliu I. Oprea,
  • Petre Panait and
  • Mihai A. Gîrţu

Beilstein J. Nanotechnol. 2014, 5, 1016–1030, doi:10.3762/bjnano.5.115

Graphical Abstract
  • Corneliu I. Oprea Petre Panait Mihai A. Girtu Department of Physics, Ovidius University of Constanţa, Constanţa 900527, Romania 10.3762/bjnano.5.115 Abstract We report results of density functional theory (DFT) calculations on some colorless aromatic systems adsorbed on a TiO2 nanocluster, in
  • ; density functional theory; photocatalytic degradation; titanium dioxide; visible light irradiation; Introduction Titania, TiO2, has been widely used as photocatalyst for environmental applications [1][2][3][4][5][6], particularly for waste water purification. Due to its large band gap TiO2 absorbs only
  • ]. Theoretically, density functional theory (DFT) calculations showed [21][22][23] that the binding of the carboxy group to titania is bidentate bridging, with the monodentate anchoring being less stable [24][25][26][27]. The higher performance of the dyes with both carboxy and hydroxy anchoring groups [28] has
PDF
Album
Full Research Paper
Published 11 Jul 2014

Double layer effects in a model of proton discharge on charged electrodes

  • Johannes Wiebe and
  • Eckhard Spohr

Beilstein J. Nanotechnol. 2014, 5, 973–982, doi:10.3762/bjnano.5.111

Graphical Abstract
  • efficiency of the catalyst. In addition, platinum was deemed suitable because substantial simulation work has been done on this system before. Much work has been done in recent years by using mostly quantum mechanical density functional theory (DFT) to study adsorbate energetics and geometries on many
PDF
Album
Full Research Paper
Published 07 Jul 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • ]. Theoretical calculations based on density functional theory (DFT) can be used to simulate the details in ELNES and to fundamentally predict the atomic and the electronic structure. Depending on the atomic potentials defined in the calculation, methods based on the band theory, the molecular orbitals or the
PDF
Album
Review
Published 02 Jul 2014

Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes

  • Andreas Mrugalla and
  • Jürgen Schnack

Beilstein J. Nanotechnol. 2014, 5, 865–871, doi:10.3762/bjnano.5.98

Graphical Abstract
  • mechanical simulation of extended systems even by means of density functional theory (DFT) has to assume a regular lattice and can treat only small unit cells [6][7][8]. Consequently, the resulting structure is also regular [8]. If one, as in the present case, can expect that the structure is irregular, i.e
PDF
Album
Full Research Paper
Published 17 Jun 2014

Volcano plots in hydrogen electrocatalysis – uses and abuses

  • Paola Quaino,
  • Fernanda Juarez,
  • Elizabeth Santos and
  • Wolfgang Schmickler

Beilstein J. Nanotechnol. 2014, 5, 846–854, doi:10.3762/bjnano.5.96

Graphical Abstract
  • energies calculated by density functional theory (DFT). These are quite reliable for hydrogen adsorption – more so than experimental values – with an estimated error of ±0.1 eV. We have calculated these adsorption energies for a fair number of densely-packed metal surfaces, mostly fcc(111). In those cases
PDF
Album
Full Research Paper
Published 13 Jun 2014

Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

  • Zenonas Jusys and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2014, 5, 747–759, doi:10.3762/bjnano.5.87

Graphical Abstract
  • intermediates in density functional theory based studies of the interaction of methanol with a Pt(111) surface [50]. The importance of water in the initial steps of dehydrogenation of methanol over Pt(111) via polarization of the hydroxyl due to hydrogen bond formation with a neighboring water molecule was
  • addressed in [63]. This favors the cleavage of the C–H bond upon adsorption in a concerted step, together with the O–H hydrogen transfer to a water molecule, which finally results in an HCHOad species. Density functional theory based calculations of the energy of dehydrogenation over solvated platinum
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2014

Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study

  • Ye Wei,
  • Haifei Zhan,
  • Kang Xia,
  • Wendong Zhang,
  • Shengbo Sang and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 717–725, doi:10.3762/bjnano.5.84

Graphical Abstract
  • electrical properties of Pt, Fe, and Al NPs adsorbed on monovacancy-defective graphene were explored by density functional theory (DFT) calculations [17][18]. To accommodate different applications of graphene derivatives, a comprehensive understanding of their mechanical properties is crucial. For instance
PDF
Album
Full Research Paper
Published 27 May 2014

Constant chemical potential approach for quantum chemical calculations in electrocatalysis

  • Wolfgang B. Schneider and
  • Alexander A. Auer

Beilstein J. Nanotechnol. 2014, 5, 668–676, doi:10.3762/bjnano.5.79

Graphical Abstract
  • Wolfgang B. Schneider Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34–36, D-45470 Mülheim an der Ruhr, Germany 10.3762/bjnano.5.79 Abstract In order to simulate electrochemical reactions in the framework of quantum chemical methods, density functional theory
  • , methods can be devised that explicitly include the electrochemical potential. In this work we discuss a Grand Canonical approach in the framework of density functional theory in which fractional numbers of electrons are used to represent an open system in contact with an electrode at a given
  • with the common implicit solvent models this scheme can become a powerful tool, especially for the investigation of omnipresent non-faradaic effects in electrochemistry. Keywords: density functional theory; electrocatalysis; electrochemistry; electronic strutcture theory; nanoparticles; quantum
PDF
Album
Full Research Paper
Published 20 May 2014

Neutral and charged boron-doped fullerenes for CO2 adsorption

  • Suchitra W. de Silva,
  • Aijun Du,
  • Wijitha Senadeera and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 413–418, doi:10.3762/bjnano.5.49

Graphical Abstract
  • . Computational Details First-principles density functional theory (DFT) calculations were carried out to study CO2 adsorption on the BC59 cage. The BC59 structure was fully optimized in the given symmetry. The calculations were carried out at B3LYP [20][21][22] level of theory while using the split valance
  • calculations to simulate the CO2 adsorption. The results show that CO2 can form weak interactions with the BC59 cage in its neutral state and the interactions can be enhanced significantly by introducing an extra electron to the system. Keywords: adsorption; boron doping; CO2 capture; density functional
  • theory (DFT); heterofullerene; Introduction The continuous dependence on fossil fuel combustion for the generation of energy has dramatically increased the atmospheric CO2 concentrations over the last century. Despite concerns for global climatic changes and many attempts to sustainably generate energy
PDF
Album
Full Research Paper
Published 07 Apr 2014

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a
  • tip–sample interaction is usually modelled (for example using density functional theory (DFT) [1]) as the interaction between a small cluster of atoms (representing the tip) and a slab of surface atoms. In order to extract the short-range force from the frequency shift measurement, however, the
PDF
Album
Full Research Paper
Published 01 Apr 2014

Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

  • Mikaela Lindgren and
  • Itai Panas

Beilstein J. Nanotechnol. 2014, 5, 195–201, doi:10.3762/bjnano.5.21

Graphical Abstract
  • Mikaela Lindgren Itai Panas Department of Chemical and Biological Engineering, Chalmers University of Technology, S-412 96 Gothenburg, Sweden 10.3762/bjnano.5.21 Abstract Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst
PDF
Album
Full Research Paper
Published 24 Feb 2014

Change of the work function of platinum electrodes induced by halide adsorption

  • Florian Gossenberger,
  • Tanglaw Roman,
  • Katrin Forster-Tonigold and
  • Axel Groß

Beilstein J. Nanotechnol. 2014, 5, 152–161, doi:10.3762/bjnano.5.15

Graphical Abstract
  • platinum(111) surface have been studied by using density functional theory (DFT), because halides are often present at electrochemical electrode/electrolyte interfaces. We focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and
  • combination of charge transfer and polarization effects on the adsorbate layer. The results are contrasted to the adsorption of fluorine on calcium, a system in which a decrease in the work function is also observed despite a large charge transfer to the halogen adatom. Keywords: density functional theory
  • adsorption of iodine and chlorine on Cu(111) [9] by using periodic density functional theory (DFT) calculations. Whereas chlorine causes the expected increase of the work function upon adsorption of an electronegative adsorbate, iodine leads to a surprising decrease of the work function for coverages up to
PDF
Album
Full Research Paper
Published 10 Feb 2014

Core level binding energies of functionalized and defective graphene

  • Toma Susi,
  • Markus Kaukonen,
  • Paula Havu,
  • Mathias P. Ljungberg,
  • Paola Ayala and
  • Esko I. Kauppinen

Beilstein J. Nanotechnol. 2014, 5, 121–132, doi:10.3762/bjnano.5.12

Graphical Abstract
  • calculated core level binding energies for variously functionalized or defected graphene by delta Kohn–Sham total energy differences in the real-space grid-based projector-augmented wave density functional theory code (GPAW). To accurately model extended systems, we applied periodic boundary conditions in
  • ; defects; density functional theory; graphene; X-ray photoelectron spectroscopy; Introduction X-ray photoelectron spectroscopy (XPS) is commonly used to identify the relative amounts of chemical elements in a sample, and it can provide information about their chemical states, i.e., bonding. Although the
  • can be compared is needed. Density functional theory (DFT) calculations can be employed to provide such a reference, especially when measurements of known molecular systems are not sufficient. However, because of the computational cost of treating core levels accurately, most calculations up to date
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2014

The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

  • Jakob G. Howalt and
  • Tejs Vegge

Beilstein J. Nanotechnol. 2014, 5, 111–120, doi:10.3762/bjnano.5.11

Graphical Abstract
  • electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V. Keywords: ammonia; density functional theory; electrocatalysis; nanoparticles; oxygen poisoning; Introduction Molybdenum nanoclusters have been identified as a prime candidate for
  • . In addition, the blocking of active sites by oxygen species has been explored; together with a determination of reduction pathways to electrochemically reduce the blocking oxygen off the surface. Computational Method DFT calculations The calculations were carried out with density functional theory
  • to reach the catalyst surface. Small amounts of oxygen present at the molybdenum nanocluster surface, arising from either the electrolyte or from the preparation of the electrocatalyst, should therefore not affect the electrochemical production of ammonia. Conclusion Density functional theory
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2014
Other Beilstein-Institut Open Science Activities