Search results

Search for "dissipation" in Full Text gives 216 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • molecule A as well as for molecule B. Previous ab-initio simulations of PTCDA on Ag(111) predict a slight asymmetry of the end groups in the dissipation channel at small distances [17], but only for one molecular orientation. Therefore we speculate that this effect is related to an asymmetry of the tip
PDF
Album
Full Research Paper
Published 27 Jan 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • with acoustic emissions, to an increase in abrasion and to stronger energy dissipation, to an increase in maintenance costs of industrial facilities due to (1) the higher need of lubricants, (2) the replacement costs of machine parts, and (3) the loss of productivity due to maintenance. However, the
PDF
Album
Full Research Paper
Published 24 Jan 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2
  • closely related to energy dissipation maps [3][4]. While phase imaging in ambient with high quality cantilever Q-factors is well established [5], a comprehensive model of the energy dissipation process in liquid is still missing since the first studies of AM-AFM measurements in liquid [6][7]. Recent
  • studies have related the phase contrast, when measuring in liquid in which low Q-factors are found, to two origins: the excitation of higher eigenmodes and the energy dissipation on the sample surface [8][9]. In this work we show that for surface associated manipulation of nanoparticles in liquid, the
PDF
Album
Full Research Paper
Published 13 Jan 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • the distance control loop does not interfere with the Kelvin control loop. First, it must not modify, by tip–surface interaction, the PLL response, e.g., by modifying Q via dissipation; second, it must not respond periodically to the frequency modulations caused by the Kelvin loop. This means that
PDF
Album
Full Research Paper
Published 02 Jan 2014

Structural development and energy dissipation in simulated silicon apices

  • Samuel Paul Jarvis,
  • Lev Kantorovich and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2013, 4, 941–948, doi:10.3762/bjnano.4.106

Graphical Abstract
  • unstable structures can be revealed by a characteristic hysteretic behaviour present in the F(z) curves that were calculated with DFT, which corresponds to a tip-induced dissipation of hundreds of millielectronvolts resulting from reversible structural deformations. Additionally, in order to model the
  • rotational degree of freedom can have as measurable an impact on the tip–surface interaction as a completely different tip structure. Keywords: apex structure; atomic force microscopy; DFT; dissipation; hysteresis; NC-AFM; silicon; spectroscopy; tip structure; Introduction The theoretical treatment of
  • , let alone due to variations in tip apices. Energy dissipation in NC-AFM measurements has most effectively been explained by adhesion hysteresis due to deformations in the tip–sample junction originating from bistable defects [31][32][33] or by structural relaxations within the larger structure of the
PDF
Album
Full Research Paper
Published 20 Dec 2013

Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments

  • Irina V. Martynenko,
  • Anna O. Orlova,
  • Vladimir G. Maslov,
  • Alexander V. Baranov,
  • Anatoly V. Fedorov and
  • Mikhail Artemyev

Beilstein J. Nanotechnol. 2013, 4, 895–902, doi:10.3762/bjnano.4.101

Graphical Abstract
  • quantum dots and chlorin e6 molecules form stable complexes that exhibit Förster resonance energy transfer (FRET) from quantum dots to chlorin e6 regardless of complex formation conditions. Competitive channels of photoexcitation energy dissipation in the complexes, which hamper the FRET process, were
  • –tetrapyrrole complexes, a formation of competitive channels of nonradiative photoexcitation energy dissipation different from FRET may take place for both donor and acceptor [4]. The origin of these energy transfer channels is not completely understood. Several physical mechanisms have been proposed, for
  • normalized PL spectrum of the energy donor; εA(ν) is the absorption spectrum of the acceptor; ν is the wavenumber. Equation 1 does not take into account a possible appearance of additional nonradiative dissipation channels due to the complex formation. That is why we can use it only for estimation of the
PDF
Album
Full Research Paper
Published 13 Dec 2013

Peak forces and lateral resolution in amplitude modulation force microscopy in liquid

  • Horacio V. Guzman and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2013, 4, 852–859, doi:10.3762/bjnano.4.96

Graphical Abstract
  • some analytical scaling laws to determine the interaction forces in AM-AFM. Hu and Raman parametrized the peak force (repulsive) by using a nonlinear asymptotic theory [46] and Hertz contact mechanics, Rodriguez and Garcia, by using the virial-dissipation method [39][47][48], deduced the following
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2013

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • . Dynamic imaging modes that are commonly used in AFM provide the phase information, typically as an image channel measured and displayed simultaneously with the topographic image. The phase shift is interpreted as giving an estimate, generally qualitative, of the energy dissipation [92][93]. Nonetheless
  • , there are many contributions to such phase contrast including the changing tip–surface contact area as the tip scans the sample. Each case must be modeled differently. Theoretical studies exploit phase and amplitude data together to identify and quantitatively measure the different dissipation processes
  • [82][94]. One caveat arising from the modulation techniques is that the phase lag signal carries information on additional dissipative processes other than viscoelastic energy dissipation, such as surface adhesion and capillary forces [95]. “On-the-fly” measurements of dissipation, which integrate the
PDF
Album
Review
Published 29 Nov 2013

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • smaller energy dissipation and a slightly increased adhesion. It is noted, that the measured DMT modulus has values out of the recommended range for this type of tip. Therefore, the accuracy of those values is not very high. However, the large differences allowed a good differentiation from carbon. No
  • regions exhibit high energy dissipation (not shown) and are quite ductile. The magnitude of the current (QNM™ current) decreased from approximately 30 nA before cycling to less than 1.5 nA (average values). In the adhesion image (not shown), three different magnitudes are distinguishable: a very high
  • dissipation values. Higher currents were measured at regions with higher stiffness. Because it is not averaged, the PeakForce QNM™ current is comparable to the peak current of the PeakForce-TUNA™ mode, and thereby includes transient as well as steady-state current. Conductivity measured in stiff areas is not
PDF
Album
Full Research Paper
Published 04 Oct 2013

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • ablation experiments when compared to the intensity enhancement calculated by FDTD. When dissipated over a wider region, the overall effect of the near-field enhancement is diminished by a factor given by the ratio of the volume with an intense near field and the dissipation volume. A possible mechanism
  • takes place due to dissipation inside the structures. Mechanism All the findings described above can be explained by ultrafast heating and subsequent melting of the plasmonic nanostructures. Assuming that the heat is produced in the area of the highest near-field intensity during the laser pulse, the
  • enhancement, (b) dissipation, and (c) field distribution for a nanotriangle like in Figure 4. (The model structure on which the simulation was based is depicted in Figure S2 in Supporting Information File 1). The polarization of the incident laser radiation was here horizontal. The simulation volume was 1 × 1
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013

A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

  • Alexander N. Obraztsov,
  • Victor I. Kleshch and
  • Elena A. Smolnikova

Beilstein J. Nanotechnol. 2013, 4, 493–500, doi:10.3762/bjnano.4.58

Graphical Abstract
  • materials and special designs, allowing more efficient heat dissipation, may reduce the temperature and increase the energy efficiency of the lamps with NGF cold cathodes up to the values predicted from a general consideration of the CL process [3][4][5]. Standard RGB phosphors used in the present study
PDF
Album
Full Research Paper
Published 28 Aug 2013

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • between the channel and a metal contact [29][30]. Indeed, the generation of the Ti4O7 Magnéli phase from TiO2 can require significant power dissipation, lead to material damage to the device as oxygen gas evolves, and, in the case of bipolar devices, require an initial irreversible “electroforming” step
PDF
Album
Full Research Paper
Published 07 Aug 2013

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • information about the ratio of the dissipative interaction to the conservative interaction. The lower phase lag in (c) and (d) indicates a lower ratio of dissipative interaction to conservative interaction (i.e., either less dissipation, higher conservative forces, or both), as compared to (a) and (b). It
  • obtain the value at 250 kHz) for polypropylene and polyethylene at 250 kHz, respectively. Both materials have a surface energy hysteresis term of 0.06 J/m2 (chosen to approximately match the average energy dissipation in AM-AFM experiments). The same first eigenmode amplitude is used for both simulations
  • (i.e., Hertz contact without energy dissipation). The result is shown in Figure 7. In this case there are no discontinuous jumps. There is a point at which the slope of the amplitude and phase curves change, but there is no contrast reversal in either. Also, there is essentially no change in the first
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

  • Thomas Baumgärtel,
  • Christian von Borczyskowski and
  • Harald Graaf

Beilstein J. Nanotechnol. 2013, 4, 218–226, doi:10.3762/bjnano.4.22

Graphical Abstract
  • AFM measurement (water adsorption or the energy dissipation of the AFM tip) should be investigated in detail in further statistical studies. Covalent binding of FITC to silicon oxide nanostructures Once suitable conditions for the controlled silanization of LAO nanostructures had been found
PDF
Album
Full Research Paper
Published 25 Mar 2013

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • as water and oxygen. Under the applied conditions, the water layer may be several monolayers thick. Once the current rises the initial surface conditions will be changed due to electrochemical processes, electromigration and local power dissipation. One of the major changes will be a reduction of the
  • likely caused by contact instabilities, even though the experiments were carried out in a regime where the tip loading force should be sufficient to provide a stable contact. It should also be noted that the current level is in the μA range, which leads to a considerable power dissipation and heating of
  • observed transient photocurrent may also be related to the local annealing of oxygen defects due to power-dissipation heating at the nanocontact formed between the ZnO NR and the conductive AFM tip. Schematic drawing of the PC-AFM setup. The sample in the present configuration was illuminated from the top
PDF
Album
Full Research Paper
Published 21 Mar 2013
Graphical Abstract
  • be shown that the frequency shift signal is, at a first approximation, only affected by conservative interactions while the measured drive amplitude is mainly influenced by dissipation [23][24][25]. However, in AM-AFM both measured signals (amplitude and phase shift) depend on both types of
  • interactions (conservative and dissipative) [26] (note that the measured frequency shift is also indirectly affected by dissipation in large-amplitude intermittent-contact experiments, in that dissipative forces can limit penetration of the probe tip into the repulsive region of the tip–sample interaction
  • experimentally feasible, it represents a promising theoretical limit. The next question concerns the relationship between the frequency shift and the phase contrast, which can be easily answered by using the damped harmonic oscillator model [22]. In the absence of tip–sample dissipation, the phase of the
PDF
Album
Full Research Paper
Published 18 Mar 2013

High-resolution dynamic atomic force microscopy in liquids with different feedback architectures

  • John Melcher,
  • David Martínez-Martín,
  • Miriam Jaafar,
  • Julio Gómez-Herrero and
  • Arvind Raman

Beilstein J. Nanotechnol. 2013, 4, 153–163, doi:10.3762/bjnano.4.15

Graphical Abstract
  • separation regulator in FM actuates z in order to maintain the frequency shift σ according to where K5 and K6 are gain constants, and σsp is the set-point frequency shift. At equilibrium in FM, the topography is purely a reflection of the virial of the interaction and the dissipation is measured in the
  • corresponding excitation force signal. The separation regulator in DAM actuates z in order to maintain the excitation force according to where K5 and K6 are gain parameters and Fsp is the force at the set-point. At equilibrium in DAM, the topography is purely a reflection of the dissipation, and the virial is
  • higher eigenmodes [36][37]. The present theory does not extend to soft microcantilevers in liquids. However, from prior work, we can expect that the primary difference for soft microcantilevers is that the dissipation reflects the energy lost to higher harmonics [38][39]. Performance metrics for high
PDF
Album
Full Research Paper
Published 27 Feb 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • , Figure 7 in [11]) and can compound itself with distortions in the force curve that may emerge in the presence of dissipation, whereby the hysteresis loops in the tip–sample force curve can change shape or shift along the tip-position axis as harmonics are removed from the spectrum (see Figure 5). Even
PDF
Album
Full Research Paper
Published 07 Feb 2013

Interpreting motion and force for narrow-band intermodulation atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 45–56, doi:10.3762/bjnano.4.5

Graphical Abstract
  • , corresponding to a increasingly dissipative tip–surface interaction. However, the maximum dissipation does not coincide with the maximum repulsive conservative force, and the energy dissipation is largest at peak amplitude for piezo extensions between 2 and 6 nm. Another interesting feature of the FI map is the
PDF
Album
Full Research Paper
Published 21 Jan 2013
Graphical Abstract
PDF
Album
Review
Published 17 Dec 2012

Spring constant of a tuning-fork sensor for dynamic force microscopy

  • Dennis van Vörden,
  • Manfred Lange,
  • Merlin Schmuck,
  • Nico Schmidt and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 809–816, doi:10.3762/bjnano.3.90

Graphical Abstract
  • attached to the support. This is due to the area connecting the two prongs, which is deformed during the oscillation. This is not only important for the spring constant but also for the dissipation of the TF. Dynamic measurements have shown that applying glue to that area will reduce the quality factor of
  • strength using [31]. Comparison of the different evaluation methods. Acknowledgements Financial support from the Deutsche Forschungsgemeinschaft through SFB616 “‘Energy dissipation at surfaces”’ is gratefully acknowledged. The authors would like to thank D. Utzat for improving the electronics.
PDF
Album
Full Research Paper
Published 29 Nov 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • bias current. Future research will have to show whether this is the result of local crystallization towards the Pt2Si3-phase caused by the high dissipation levels under large current bias. For details concerning the electronic transport properties of nanogranular FEBID structures the reader is referred
PDF
Album
Video
Review
Published 29 Aug 2012

Repulsive bimodal atomic force microscopy on polymers

  • Alexander M. Gigler,
  • Christian Dietz,
  • Maximilian Baumann,
  • Nicolás F. Martinez,
  • Ricardo García and
  • Robert W. Stark

Beilstein J. Nanotechnol. 2012, 3, 456–463, doi:10.3762/bjnano.3.52

Graphical Abstract
  • establishing a method to separate attractive and repulsive contributions to the interaction force. To this end, it has to be proven whether such low setpoint ratios lead to stable imaging conditions. Bimodal APD curves may also give further insight into the various modes of energy dissipation because bimodal
PDF
Album
Full Research Paper
Published 20 Jun 2012

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
  • environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. Keywords: atomic force microscopy; control systems; dissipation; frequency
  • dissipative forces, that subtract energy from the oscillation [16][17]. The dissipation generally grows monotonically [18] as the tip approaches the sample surface (Figure 1b). However, the precise dependence of the dissipation on the tip–sample distance depends on the detailed atomic configuration of the tip
  • involved in the experiment [19]. In this work we present a new AFM scanning mode, which we have called “drive amplitude modulation” (DAM-AFM) [20] and which takes advantage of the aformentioned monotonicity of the dissipation to obtain stable images in all environments from vacuum to liquids. Moreover, DAM
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Models of the interaction of metal tips with insulating surfaces

  • Thomas Trevethan,
  • Matthew Watkins and
  • Alexander L. Shluger

Beilstein J. Nanotechnol. 2012, 3, 329–335, doi:10.3762/bjnano.3.37

Graphical Abstract
  • consisting of strong displacement of an anion out of the surface to bond to the tip apex. This jump of a surface ion to the tip apex will result in hysteresis in the tip–surface force field and atomic-scale dissipation being measured by the NC-AFM instrument [23][24]. For the Cr tip interacting with the NaCl
PDF
Album
Full Research Paper
Published 13 Apr 2012
Other Beilstein-Institut Open Science Activities