Search results

Search for "dissolution" in Full Text gives 274 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • to a concentration of 462.9 mg·mL−1 while the CTAB solution concentration was made up to 49.7 mg·mL−1. These solutions were prepared and then placed into a water bath heated to 50 °C to aid dissolution. Once dissolved, the surfactant solution was placed into the surfactant reservoir of the
PDF
Album
Full Research Paper
Published 08 Feb 2016

Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

  • Ilana Perelshtein,
  • Anat Lipovsky,
  • Nina Perkas,
  • Tzanko Tzanov and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2016, 7, 1–8, doi:10.3762/bjnano.7.1

Graphical Abstract
  • FEG from FEI (USA). The Cu and Zn concentrations on the fabric surface were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis (Horiba ULTIMA 2 spectrometer) after their dissolution from the fabric with 0.5 M HNO3. The dyes adsorbed on the cotton were
  • the dissolution of the M2+ and O2− ions. As ZnO is more soluble in water, higher percentage of released ions was found for the ZnO coating. To follow the leaching of the dye into water and saline solution the color difference of the textiles before and after leaching experiments was studied by
PDF
Album
Full Research Paper
Published 04 Jan 2016

Selective porous gates made from colloidal silica nanoparticles

  • Roberto Nisticò,
  • Paola Avetta,
  • Paola Calza,
  • Debora Fabbri,
  • Giuliana Magnacca and
  • Dominique Scalarone

Beilstein J. Nanotechnol. 2015, 6, 2105–2112, doi:10.3762/bjnano.6.215

Graphical Abstract
  • directing agent. Benzene (≥99.7%, Riedel-de-Haën) was used as a solvent to solubilize the block copolymer. All chemicals were used without further purifications. Copolymer benzene solutions (1 wt %) were prepared and let stirring until complete dissolution of the copolymer. Micellar solutions were obtained
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2015

An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology

  • Richard L. Marchese Robinson,
  • Mark T. D. Cronin,
  • Andrea-Nicole Richarz and
  • Robert Rallo

Beilstein J. Nanotechnol. 2015, 6, 1978–1999, doi:10.3762/bjnano.6.202

Graphical Abstract
  • , e.g., “Parameter Value [analyte role]” (i.e., the dissolved species being measured) for dissolution Assay file templates. No claim is made that the templates developed to date within the NanoPUZZLES project would capture all relevant measurements which might be associated with a given category of
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2015

Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure

  • Jakub Hrib,
  • Jakub Sirc,
  • Radka Hobzova,
  • Zuzana Hampejsova,
  • Zuzana Bosakova,
  • Marcela Munzarova and
  • Jiri Michalek

Beilstein J. Nanotechnol. 2015, 6, 1939–1945, doi:10.3762/bjnano.6.198

Graphical Abstract
  • interweaving of PEG and chains of the polymer matrix during the electrospinning process. Expecting the well interweaving of PEG molecules, their release is primarily influenced by the dissolution rate and consequent transport through the material, i.e., the molecules with lower molecular weight and so higher
  • mobile, which allows them to partially penetrate the nanofibers. In this case, the distance from the surface controls the dissolution rate. The longer chains of PEG 20 contain parts of molecules which remain near the surface and are more accessible to water. This effect accelerates the release of longer
  • water molecules may result in such distinct differences between the release rates from PVA. The higher amount of released PEG from PVA brings the question whether it is not related to the dissolution of the fibers in an aqueous environment. Therefore, the SEM images of PVA nanofibers after release
PDF
Album
Full Research Paper
Published 25 Sep 2015

Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates

  • Sinan Sabuncu and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 1897–1903, doi:10.3762/bjnano.6.193

Graphical Abstract
  • contaminate the NP suspension, which may limit the applications of the NPs. Their dispersion in aqueous media can also be physically achieved after long ultrasonication processes (up to 60 h [10]). However, the long sonication time may also cause erosion or dissolution and the formation of cavities on the
PDF
Album
Full Research Paper
Published 14 Sep 2015

Nanocuration workflows: Establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials

  • Christina M. Powers,
  • Karmann A. Mills,
  • Stephanie A. Morris,
  • Fred Klaessig,
  • Sharon Gaheen,
  • Nastassja Lewinski and
  • Christine Ogilvie Hendren

Beilstein J. Nanotechnol. 2015, 6, 1860–1871, doi:10.3762/bjnano.6.189

Graphical Abstract
  • ., dissolution rate at a particular pH and toxicity in a specific organism). These three organizations (caNanoLab, NR, and CEINT-NIKC) differ in sourcing data to be curated (established protocols, literature sources, primarily internal or fully external), the intended users (medical researchers conversant with
PDF
Album
Supp Info
Commentary
Published 04 Sep 2015

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • environment the following information was registered: test medium, hydrodynamic size of NPs in the test environment (including the method used for analysis), dissolution (if applicable), and surface charge (ζ-potential). Concerning the toxicity testing, we tabulated the following information: test organism
  • , primary size, possible impurities, surface area and other observations, and the test environment-specific characteristics are: media, size, dissolution and zeta potential (Supporting Information File 2). Figure 4 illustrates the distribution of the data on ENM characteristics in NanoE-Tox database
  • on their fate in respective conditions [24][49]. In aquatic environment, ENMs tend to form agglomerates that might lead to their precipitation from the water phase; on the other hand, metal-based ENMs can release potentially toxic metal ions due to dissolution [50]. Cu2+, Zn2+ and Ag+, which can
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • (lacking surface ligands) are known to cause delayed embryo hatching, developmental abnormalities [12] through dissolution and release of ionic zinc [13][14] as well as induction of DNA damage through generation of reactive oxidative species (ROS) [12][15]. ZnO NPs are often coated with a variety of
  • ][21]. While the dissolution kinetics and agglomeration state of the ZnO NPs is known to influence the toxicity of the materials, this study aimed to determine if specific intrinsic features could be used in lieu of empirical data on the material’s behaviour. Surface chemical ligands and capping agents
  • biological interactions, even more than core composition. This finding has been supported in other studies investigating a wide range of NP types [27][41][42]. Given that dissolution and the resulting release of zinc ions and ROS are the primary cause of ZnO NP toxicity [8], it is possible that the lack of
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

  • Ziren Yan,
  • Ying Wu and
  • Junwei Di

Beilstein J. Nanotechnol. 2015, 6, 1362–1368, doi:10.3762/bjnano.6.140

Graphical Abstract
  • consistent with the previous report [4]. The chemical reaction involved in the dissolution of Ag at neutral conditions is the following: The deposition of byproducts, such as AgOH or Ag2O, on the particle surface might hinder the complete removal of Ag from the alloy and block up the hole of wall [30
PDF
Album
Full Research Paper
Published 18 Jun 2015

Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers

  • Deborah Vidick,
  • Xiaoxing Ke,
  • Michel Devillers,
  • Claude Poleunis,
  • Arnaud Delcorte,
  • Pietro Moggi,
  • Gustaaf Van Tendeloo and
  • Sophie Hermans

Beilstein J. Nanotechnol. 2015, 6, 1287–1297, doi:10.3762/bjnano.6.133

Graphical Abstract
  • were also determined by ICP and XPS (Table 1). The experimental ratios measured by ICP are relatively close to the theoretical values, as expected. There is a systematic error due to the known difficulties regarding Ru dissolution. Therefore, we conclude that clusters when broken down give fragments
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2015

Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

  • Ina Schubert,
  • Loic Burr,
  • Christina Trautmann and
  • Maria Eugenia Toimil-Molares

Beilstein J. Nanotechnol. 2015, 6, 1272–1280, doi:10.3762/bjnano.6.131

Graphical Abstract
  • occurs at similar potentials as the reduction of the ions as it can be seen in the CV in Figure 1b. Once enough ions are reduced, the dissolution of Au atoms is most probably suppressed, resulting in a constant current flow, during the growth of the Ag-rich segments. When the voltage is switched back
  • electrodeposition of thin films where the effect is called kinetic surface roughening [55][56]. These Au/Ag/Au nanowires constitute excellent platforms for the fabrication of small nanogaps, by selective dissolution of the Ag segment. The method named “on-wire lithography” has been reported previously for wires of
  • different noble metals [38]. In these cases, segmented nanowires were created by using different electrolytes for Au and Ag and by exchanging the electrolyte after the deposition of each segment. Our nanowires, in turn, are deposited from a single-bath electrolyte, which could influence the dissolution
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

  • Natalia E. Mordvinova,
  • Alexander A. Vinokurov,
  • Oleg I. Lebedev,
  • Tatiana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2015, 6, 1237–1246, doi:10.3762/bjnano.6.127

Graphical Abstract
  • with HF. According to the literature [24], during daylight photoetching a significant blue shift of the luminescence maximum is observed, which means that the diameter of the QDs decreases because of a partial dissolution of the QDs. If the Zn atoms are located only on the surface of the QDs, then
PDF
Album
Full Research Paper
Published 01 Jun 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • is possible that a passivating effect from the alloyed gold is responsible for these observations. Future studies on the time-dependent dissolution of such alloyed nanoparticles in biological media may help to better understand this effect. Experimental Chemicals We used silver nitrate (Roth, p.a
  • dissolution of gold in aqua regia according to standard procedures. Ultrapure water (Purelab ultra instrument from ELGA) was used for all preparations. Synthesis Prior to use, all glassware was cleaned with boiling aqua regia. The nanoparticles were synthesized by reduction with citrate and tannic acid in
PDF
Album
Full Research Paper
Published 27 May 2015

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by
  • dissolution, either the PMMA matrix (see Figure 1b, PMMA marked in red) or the PS droplets (see Figure 1g, PS marked in blue) can be kept on the substrate for the lithographic application. After the deposition of metal by thermal evaporation, the desired metal covers the whole surface of the sample (see in
  • ][39]. Conclusion Polymer blend lithography (PBL) makes use of the purely lateral phase separation of two immiscible polymers during spin-casting at controlled humidity. A metal copy of either of the polymer components can be fabricated by the selective dissolution of one component, followed by metal
PDF
Album
Full Research Paper
Published 26 May 2015

Tattoo ink nanoparticles in skin tissue and fibroblasts

  • Colin A. Grant,
  • Peter C. Twigg,
  • Richard Baker and
  • Desmond J. Tobin

Beilstein J. Nanotechnol. 2015, 6, 1183–1191, doi:10.3762/bjnano.6.120

Graphical Abstract
  • containing 0.5 mg/mL tetrazolium dye (MTT) for 4 h. The medium was carefully removed and 150 μL of dimethyl sulfoxide (DMSO) added to each well. The plate was gently shaken to achieve complete dissolution of the formazan crystals then the absorbance read on a spectrophotometer (Tecan Infinite) at 550 nm. The
PDF
Album
Full Research Paper
Published 20 May 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • . 2.3.1.7 Particle growth and dissolution: At first glance, the chemistry of a Li/O2 cell may appear quite simple, however, due to worldwide research efforts within the last four years, it was recognized that it is in fact, a very complex cell chemistry. As a consequence it was necessary to refocus on
  • fundamental aspects such as the growth and dissolution process of Li2O2 particles during cycling on a microscopic scale. Various morphologies of Li2O2 deposits are reported in literature. On the one hand, so-called Li2O2 “donuts” or toroids are reported that form to a diameter of up to 1 µm, depending on
  • -state Li/O2 cell, without any liquid electrolyte, in an environmental SEM and observed the formation of large toroid particles larger than 500 nm [95]. To conclude, even the dissolution process of Li2O2 during battery operation is not fully understood and continues to be a part of research efforts
PDF
Album
Review
Published 23 Apr 2015

Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence

  • Yuliang Wang,
  • Huimin Wang,
  • Shusheng Bi and
  • Bin Guo

Beilstein J. Nanotechnol. 2015, 6, 952–963, doi:10.3762/bjnano.6.98

Graphical Abstract
  • decreased from 79% to 66% could be the dissolution of some NBs during coalescence. Conclusion In this study, the morphological characterization of NBs was implemented. Here, a new method was developed for image segmentation through the combination of the threshold method and the active contour method. The
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2015

Simulation tool for assessing the release and environmental distribution of nanomaterials

  • Haoyang Haven Liu,
  • Muhammad Bilal,
  • Anastasiya Lazareva,
  • Arturo Keller and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2015, 6, 938–951, doi:10.3762/bjnano.6.97

Graphical Abstract
  • . In such analysis, the environmental entry, movement, and distribution of contaminants are described by a set of mathematical expressions. Specifically, MCMs require mechanistic quantification of intermedia transport rates (e.g., dry and wet deposition, sedimentation, dissolution) and rates of
  • strong dependence of ENM intermedia transport on the complete PSDs [9]. In earlier work, a multimedia environmental distribution of nanomaterials (MendNano) model was developed [9] based on a mechanistic description of various intermedia transport and reaction (including dissolution) processes, which
  • the absence of direct ENM release to those compartments. Also, the dissolution of sparingly soluble ENMs in the water compartment can be the dominant mechanism for removal of particulate ENMs from water. MendNano was also applied to the modeling of the environmental distribution of semi-volatile
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • pressure P. Dissolution at the surface is treated according to Henry’s law S = KeqP where S is the solubility of oxygen and Keq is the solubility constant. The use of this approximation requires a description of the deposit composition model. The model deposit consists of metal nanoparticles with a defined
PDF
Album
Full Research Paper
Published 08 Apr 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • the NPs would, mediated by the protein corona, reach biological “endpoints” that they could not reach without their protein cover [5][7][22]. Dissolution of NPs has also been addressed and is of specific importance where molecular or ionic substances are released from the NP that cause own, sometimes
  • well known, adverse effects [23][24][25][26][27]. The intriguing consequence of dissolution is that the particulate state may define the transport of the NPs within a biological system and molecular agents that are released wherever the NPs are located may dominate the (patho)biological effects. In
  • consequence, the delicate interplay between the relative timescales of particle transport and dissolution/release kinetics can well govern NP toxicity. While this factor further complicates a fundamental understanding of NP toxicity, the right time-scale ratio of the participating effects can be a critically
PDF
Album
Review
Published 30 Mar 2015

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

  • Melita Rutar,
  • Nejc Rozman,
  • Matej Pregelj,
  • Carla Bittencourt,
  • Romana Cerc Korošec,
  • Andrijana Sever Škapin,
  • Aleš Mrzel,
  • Srečo D. Škapin and
  • Polona Umek

Beilstein J. Nanotechnol. 2015, 6, 831–844, doi:10.3762/bjnano.6.86

Graphical Abstract
  • formed through a dissolution–recrystallization process, as suggested by Zhu et al. [14]. The shape of these crystallites strongly depends on the pH of the reaction medium since different ions act as capping agents [31]. Published results [14][20][21] suggest that the stability of HTiNRs in aqueous
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2015

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • obtained at the solid/gas interface are also valid at the solid electrolyte interface. In this paper we present the results of investigations of friction forces during UPD and dissolution of Cu/Au(111) and also during sulfate adsorption in sulfuric acid solution. We extend previous measurements to lower
PDF
Album
Full Research Paper
Published 26 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • procedure, 0.05 M zinc nitrate (Zn(NO3)2·6H2O) was mixed with hexamethylenetetramine (HMT) in a glass beaker and slowly stirred until complete dissolution was achieved. The growth temperature and time was 95 °C and 3 h, respectively. The beaker was then left inside the oven for 30 min to cool down to 40 °C
PDF
Album
Full Research Paper
Published 12 Mar 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • layers [24][25]. On the other hand, uptake via ingestion has been proven for silver [26][27][28] as well as gold nanoparticles [29][30]. Interestingly, for AgNP, it has been suggested that mainly ionic silver, released from the actual particles due to dissolution is absorbed via the intestinal tract
  • ex situ produced BSA–AgNP displayed no toxicity at all (Figure 7B). As small nanoparticles possess a higher surface area, dissolution of Ag+ ions occurs to a greater extend than in case of larger particles. Therefore, if Ag+ ions are responsible for the observed effects, these should be more grave
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015
Other Beilstein-Institut Open Science Activities