Search results

Search for "hierarchical" in Full Text gives 184 result(s) in Beilstein Journal of Nanotechnology.

Inorganic–organic hybrid materials through post-synthesis modification: Impact of the treatment with azides on the mesopore structure

  • Miriam Keppeler,
  • Jürgen Holzbock,
  • Johanna Akbarzadeh,
  • Herwig Peterlik and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2011, 2, 486–498, doi:10.3762/bjnano.2.52

Graphical Abstract
  • the application of diol/polyol-modified silanes [1][2][3][14][15][16][17][18]. Nakanishi and Lindén relied on polymerization-induced phase separation during sol–gel processing to form monolithic bodies with a hierarchical organisation of the pore structure at the meso- and macroscopic length scale [16
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2011

Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

  • David M. Benoit,
  • Bruno Madebene,
  • Inga Ulusoy,
  • Luis Mancera,
  • Yohann Scribano and
  • Sergey Chulkov

Beilstein J. Nanotechnol. 2011, 2, 427–447, doi:10.3762/bjnano.2.48

Graphical Abstract
  • systems and, as such, are able to account for resonance phenomena, combination bands and vibrational overtones in a hierarchical and consistent manner. While temperature effects can be included using a statistical mechanics framework, these are usually neglected, and thus the approach is better suited to
  • desirable to use an approach that has a physical underpinning and whose accuracy can be improved systematically. Rabitz et al. [8][9] showed that a many-body decomposition leads to a convenient hierarchical representation of the PES. In their approach, the PES is expanded in a series of one-dimensional
PDF
Album
Full Research Paper
Published 10 Aug 2011

Organic–inorganic nanosystems

  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 363–364, doi:10.3762/bjnano.2.41

Graphical Abstract
  • part funded by the German Science Foundation (DFG), many of them within the Collaborative Research Center (SFB) 569 dealing with the “Hierarchical Structure Formation and Function of Organic–Inorganic Nanosystems”. Thus, in addition to acknowledging the contributions of all authors and their teams, I
PDF
Video
Editorial
Published 12 Jul 2011

The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 302–310, doi:10.3762/bjnano.2.35

Graphical Abstract
  • joint project within the DFG priority program SPP 1420, whose members include the Department of Functional Morphology and Biomechanics at the University of Kiel and the Institute for Chemistry at the University of Osnabrück, the hierarchical structure of the slippery zone is currently being analysed at
  • Materials Research: Functionality by Hierarchical Structuring of Materials’ (project GO 995 ⁄ 9-1) to SG.
PDF
Album
Full Research Paper
Published 16 Jun 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • superhydrophobic, low adhesive surface design, which combines the hierarchical structuring of petals with a wetting behavior similar to that of the lotus leaf. Keywords: anti-adhesive; petal effect; petal structures; polymer replication; superhydrophobic; Introduction Plant surfaces provide a large diversity of
  • “petal effect” and are anti-adhesive for water droplets. It is well known that hierarchical surface architecture represents optimized structures for superhydrophobic surfaces [11][33][34][35][36]. Based on the data presented here, we can describe two main superhydrophobic surface architectures for plant
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Functional morphology, biomechanics and biomimetic potential of stem–branch connections in Dracaena reflexa and Freycinetia insignis

  • Tom Masselter,
  • Sandra Eckert and
  • Thomas Speck

Beilstein J. Nanotechnol. 2011, 2, 173–185, doi:10.3762/bjnano.2.21

Graphical Abstract
  • occupied and trap solar energy in an efficient way (e.g., [5]). However, these benefits are coupled with disadvantages such as increased magnitude and complexity of mechanical loads. Therefore, structural and mechanical adaptation on different hierarchical levels can be observed both in main stems as well
  • for Textile Technology and Process Engineering Denkendorf, the Institute of Lightweight Structures and Polymer Technology of the TU Dresden as well as the Botanical Garden of the TU Dresden [27][28][29][30][31]. In this project the hierarchical organisation of branch–stem-junctions of arborescent
  • monocotyledons and columnar cacti is analysed and different biomechanical tests are performed on these plants in order to determine the mechanical parameters of stems, branches, branch–stem-junctions and the different constituent tissues in different directions. This allows for simulation of hierarchical
PDF
Album
Supp Info
Video
Full Research Paper
Published 24 Mar 2011

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • the aquatic environment – some of the leaves float occasionally on the water surface – the stomata are located in the upper epidermis. The lower epidermis consists of convex cells covered with wax tubules and contains only few stomata. The upper epidermis features the distinctive hierarchical
  • structure consisting of papillae with a dense coating of agglomerated wax tubules, which is the basis for the famous superhydrophobicity (Figure 1). However, a hierarchical surface structure which induces strong water repellency and contact angles above 150° is not a special feature of lotus leaves. It has
  • regenerate damaged or lost waxes. Conclusion It is true that lotus exhibits outstanding water repellency on the upper side of its leaves. The basis of this behaviour is the hierarchical surface structure. In comparison to other species with a hierarchical surface structure composed of papillae and wax
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • through water, but most of the time it supports itself from underneath against the water surface with both pairs of fore legs and the tip of the abdomen [26]. The surface of the elytra is covered by a hierarchical structure of larger setae and very small microtrichia. Balmert et al. hypothesized that the
  • , a pure microtrichia structure and a hierarchical structure with setae and microtrichia (Figure 2). On the abdominal sternites a pure setae structure can be observed. About 2,300 setae per mm2 cover the surface up to a height of approximately 30 µm. The basis of these setae points in the caudal
  • in the living animal, the upper side stays in direct contact with the water. It therefore may have developed further adaptations to stabilize the air film. Obviously, the hierarchical double structure of the upper side of the elytra with a dense microtrichia cover and two different kinds of setae is
PDF
Album
Full Research Paper
Published 10 Mar 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • , nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic
  • animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with
  • waxes on lotus leaves exist as tubules [10][11]. Water droplets on these hierarchical structured surfaces readily sit on the apex of the nanostructures because air bubbles fill the valleys of the structure under the droplet (Figure 1a). Therefore, these leaves exhibit considerable superhydrophobicity
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities