Search results

Search for "high temperature" in Full Text gives 333 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • of sample A, all components were observed until high temperature, which suggests the involvement of similar non-radiative de-excitation channels in the thermal quenching of these transitions. For sample B, C2 and C4 disappear at quite low temperatures (in the range 40–60 K), C5 quenches at ≈170 K
  • experimental points in the high temperature region where the strongest PL thermal quenching occurs. For the other three components, the de-excitation channels only include discrete energy levels: two de-excitation channels for C3 (C5) with activation energies of E1 = 1.23 meV (3.0 meV) and E2 = 31 meV (15 meV
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites

  • Jilin Wang,
  • Hejie Liao,
  • Yuchun Ji,
  • Fei Long,
  • Yunle Gu,
  • Zhengguang Zou,
  • Weimin Wang and
  • Zhengyi Fu

Beilstein J. Nanotechnol. 2017, 8, 2116–2125, doi:10.3762/bjnano.8.211

Graphical Abstract
  • the proposed growth mechanism of the TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites were further discussed. Keywords: chemical activity; hierarchical/heterostructures; self-propagating high-temperature synthesis; TiB2; TiN; Introduction Refractory materials such as borides, nitrides
  • properties will make TiB2/TiN composites an attractive prospect for practical applications in many fields such as super-hard materials, electrodes, wear resistance materials, armor plates, jet engine parts and high temperature ceramic components [1][3][7][8]. The previous researches were primarily focused on
  • display conventional particle morphology. Recently, several kinds of inorganic nanomaterials have been prepared in our research group using a developed reaction coupling self-propagating high-temperature synthesis (RC-SHS) technology [9][10][14]. The results showed that the heat of the reaction intensity
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • ) (PMMA) layer, which would remain stable during the preoxidation and the low-temperature carbonization. This layer, however, will completely degrade after the high-temperature carbonization on the surface of the PAN nanoparticle to inhibit the inter-particular adhesion between carbon nanospheres; thus
  • in a high-temperature carbonization furnace, which was filled with pure nitrogen and heated to a given temperature at a rate of 5 °C/min and remained for 1 h (600 °C and 750 °C) or 0.5 h (1000 °C). After naturally cooling down to room temperature, the PAN-based carbon nanospheres were obtained
  • -carbonization-treatment process, the two-carbonization-treatment process, which combined a low-temperature carbonization and a high-temperature carbonization step, results in product with a higher C content and a higher N content (CP4 vs CP5). After two carbonization treatments at 600 °C and 1000 °C, the C
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • with theoretical spectra from quantum-chemical calculations. The most probable models are small compact CF areas produced from a fast F2 action at high temperature, and the short armchair or zigzag CF chains, which are formed from BrF3 at room temperature over a few days, i.e., under conditions
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • crystallinity to facilitate grain growth in nanocrystalline materials. This trend, clearly shown in Figure 3c, implies that the initial growth of the vertical sheets can be attributed to the relaxation of stress that starts at grain boundaries of NG islands. The higher growth rates at high temperature could be
PDF
Album
Full Research Paper
Published 10 Aug 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • . In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18–210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter
  • particles (DNDs) are produced [20]. A typical size distribution has a maximum DND diameter of around 5 nm. The second group of NDs are prepared by mechanical grinding of high-pressure high-temperature (HPHT) diamond crystals [21]. The HPHT ND particle size distribution can be mechanically controlled down to
  • influencing the bulk of the NDs (formation of vacancies, and N-V sites supported by high-temperature annealing in vacuum) [39]. This was confirmed by the fact that there was no obvious difference in the FTIR spectra between the MR-18 sample and the AR-40 sample. The zeta potential of MR-type NDs were negative
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Group-13 and group-15 doping of germanane

  • Nicholas D. Cultrara,
  • Maxx Q. Arguilla,
  • Shishi Jiang,
  • Chuanchuan Sun,
  • Michael R. Scudder,
  • R. Dominic Ross and
  • Joshua E. Goldberger

Beilstein J. Nanotechnol. 2017, 8, 1642–1648, doi:10.3762/bjnano.8.164

Graphical Abstract
  • used as they require a high-temperature for post annealing to heal the lattice. Due to the existence of a large number of closely related layered Zintl phases with group-13 and group-15 elements that are structurally similar to CaGe2 dopant elements can be partially substituted into the germanium
PDF
Album
Full Research Paper
Published 09 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • rigors of high-temperature processing [9][10][11]. Oxidative stabilization is crucial to prevent melting or fusion of the fibers. Also, it minimizes volatilization of elemental carbon in the following carbonization step and maximizes the final carbon yield. Chemistry and mechanisms of complex oxidative
  • , heating rate, tension of the fiber, total stabilization time and dwell time, air flow rate and pre-stabilization treatment [13]. Carbonization is the next step in the process. The carbonization processes can be divided into low-temperature and high-temperature carbonization, and graphitization above 2000
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • semiconductors and carbon-based materials can be easily designed and synthesized by thermal condensation of several low cost, solid precursor materials such as urea, thiourea, dicyandiamide, cyanamide and guanidine hydrochloride at high temperature (500–600 °C) in air or inert atmosphere (Figure 3c) [88][89][90
PDF
Album
Review
Published 03 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • sensitive to high-temperature treatment, such as thermal annealing, has been discussed in one of the previous chapters. When heated, this material becomes harder, more rigid and more brittle. A simple explanation of this effect is the increase of the degree of polymer crystallinity at elevated temperatures
PDF
Album
Review
Published 28 Jul 2017

Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)

  • Dmytro Solonenko,
  • Ovidiu D. Gordan,
  • Guy Le Lay,
  • Dietrich R. T. Zahn and
  • Patrick Vogt

Beilstein J. Nanotechnol. 2017, 8, 1357–1365, doi:10.3762/bjnano.8.137

Graphical Abstract
  • microscopy observations [17] as well as Raman results after post-annealing of the (3×3)/(4×4) epitaxial silicene phase [23], which demonstrated a dewetting process of the Si layer from the Ag(111) surface around 300 °C. Hence, a temperature of 300 °C marks the high temperature limit for 2D Si layer formation
PDF
Album
Full Research Paper
Published 03 Jul 2017

Miniemulsion copolymerization of (meth)acrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

  • Bertha T. Pérez-Martínez,
  • Lorena Farías-Cepeda,
  • Víctor M. Ovando-Medina,
  • José M. Asua,
  • Lucero Rosales-Marines and
  • Radmila Tomovska

Beilstein J. Nanotechnol. 2017, 8, 1328–1337, doi:10.3762/bjnano.8.134

Graphical Abstract
  • situ composites in the high temperature region suggest the formation of 3D networks of the filler within the polymer matrix and significant crosslinking between the both phases [18]. In order to gain deeper insight into the reinforcement effect of the MWCNTs in these composites, stress–strain testing
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2017

Oxidative chemical vapor deposition of polyaniline thin films

  • Yuriy Y. Smolin,
  • Masoud Soroush and
  • Kenneth K. S. Lau

Beilstein J. Nanotechnol. 2017, 8, 1266–1276, doi:10.3762/bjnano.8.128

Graphical Abstract
  • oxidant flowrate series of runs, two additional conditions were carried out at a lower substrate temperature of 25 °C compared to their high temperature counterparts (LT series: LT-BC, LT-F1). The decrease in the temperature may promote surface adsorption over reaction that can impact polymer growth
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • , a drying process at temperatures below 100 °C and high-temperature treatment at several hundred degrees centigrade [1][6]. The most important reason to develop these methods, which are reported in literature with the objective of coating carbon fibers with silicon dioxide and ceramic layers, is
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • pore width distribution around 1 nm [46] in comparison to high temperature glassy carbons with mesopores in the range of 5 nm [41]. This difference of the two materials processed under different temperature conditions might be due an increase of graphitic onion-like substructures which form under the
  • high temperature treatment from lesser graphitic-like material. The growth of these sp² zones leads to a decrease of open adsorption sites and leads to an obstruction of former micropores. Characterization of silicon carbide tubes (5) Figure 7 shows TEM images of the silicon carbide tubes (5) and the
  • to a decrease in the total micropore volume and an increase in the mesopore content. The similarity of the carbon tube material (4) after CO2 adsorption with 4 carbonized at a high temperature of 1300 °C or 1600 °C is also observed in the Raman spectra (Figure 11). After the thermal annealing of 4
PDF
Album
Full Research Paper
Published 24 May 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • range of 250–1400 nm. Results and Discussion ZnO/ZCIS photocatalyst synthesis and characterization QDs with a CIS core were prepared by a high temperature decomposition method in the noncoordinating solvent 1-octadecene using In(OAc)3, CuI and dodecanethiol (DTT) as starting materials. DDT serves both
  • complete evaporation of the solvent. Next, the ZnO/ZCIS powder was heated at high temperature to decompose the DDT ligand covering ZCIS QDs and create a heterojunction between ZnO and ZCIS QDs that facilitates the electron transport process. In preliminary experiments, we varied the amount of ZCIS QDs
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • a diffusion barrier against humidity, chemicals and gases during further processing. In addition, it has to be deposited using a process with minimal influence on graphene, e.g., high-temperature or plasma-CVD processes are to avoided. Encapsulation with exfoliated single-crystalline h-BN layers
PDF
Album
Review
Published 15 May 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • volume, are energetically metastable and can dewet or agglomerate into particles when exposed to a high temperature. Substrates with periodic topography can be used to direct or control the dewetting process to form ordered arrays of nanoparticles governed by the topographic features of the underlying
  • resonances at 780 and 1020 cm−1 increased. According to Peroz et al. [16], when the intensity ratio (τSiOH) at t min to 0 min is <0.3, the patterns are stable upon subsequent high-temperature annealing. Figure 2 indicates that this occurs after more than 30 min of annealing in our experiment. The resists
  • of metallic thin films in a controllable manner. The imprinted topography on sol–gel silica successfully guided the solid-state dewetting process of noble metal films at high temperature without structural degradation. By providing a simple route to assemble nanoparticles on inexpensive large-area
PDF
Album
Letter
Published 12 May 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • , 36.14, 37.89, and 50.28° 2θ can be assigned to β-TCP phase (JCPDS 01-070-2065). β-TCP is normally synthesized at high temperature, although there are a few examples of β-TCP formation under milder conditions. For example, β-TCP can be synthesized at room temperature in methanol from CaHPO4 and ACP
  • specific surface area and three-dimensional porous structures. In addition, osteoblast proliferation and apoptosis are affected by the size and shape of CP. Despite this interest, control of the formation of CP nanostructures with specific characteristics remains a challenge. Although dry methods and high
  • temperature methods are able to produce highly crystalline CP, they also produce aggregated products of large crystal size and low phase purity [9][11]. Moreover, these processes cannot control the morphology and size of the CP generated. Similarly, although wet-chemistry methods can be used to control the
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • friendly, and exhibits an excellent redox activity [11][12][13][14][15][16][17][18]. The redox reaction of Fe2O3 with lithium is as follows: Various methods have been reported for the synthesis of Fe2O3. Cho et al. [19] reported the synthesis of α-Fe2O3 materials by a simple high-temperature processing
PDF
Album
Full Research Paper
Published 17 Mar 2017

Liquid permeation and chemical stability of anodic alumina membranes

  • Dmitrii I. Petukhov,
  • Dmitrii A. Buldakov,
  • Alexey A. Tishkin,
  • Alexey V. Lukashin and
  • Andrei A. Eliseev

Beilstein J. Nanotechnol. 2017, 8, 561–570, doi:10.3762/bjnano.8.60

Graphical Abstract
  • selective metal dissolution in 0.5 M CuCl2 (5 vol % HCl). Subsequently, the pore bottoms were opened by chemical etching in 25 wt % H3PO4 aqueous solution at 25 °C followed by electrochemical detection of the pore opening [28]. To increase on the first step membrane stability, high-temperature dehydration
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2017

Diffusion and surface alloying of gradient nanostructured metals

  • Zhenbo Wang and
  • Ke Lu

Beilstein J. Nanotechnol. 2017, 8, 547–560, doi:10.3762/bjnano.8.59

Graphical Abstract
  • previous studies demonstrated different characteristics in nanostructured materials. For instance, Charlot et al. [59] showed that the mechanical milling process applied before the self-propagating high-temperature syntheses (SHS) process markedly decreased the ignition temperature (≈100 °C) of the
  • systems with a high heat release by intermetallic formation. SHS occurred at a high temperature and significantly elevated sample temperature after the reaction ignition in such systems [61][62]. In comparison, the enthalpy change and reaction temperature between Fe and Zn (or N) are relatively low, thus
PDF
Album
Review
Published 03 Mar 2017

Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

  • Massimiliano Lucci,
  • Ivano Ottaviani,
  • Matteo Cirillo,
  • Fabio De Matteis,
  • Roberto Francini,
  • Vittorio Merlo and
  • Ivan Davoli

Beilstein J. Nanotechnol. 2017, 8, 539–546, doi:10.3762/bjnano.8.58

Graphical Abstract
  • highest critical temperature (15.5 K) is obtained when the N2 flux is 13 sccm and the dc power applied is 300 W. Unfortunately, high power on the target implies a high temperature on the substrate. Consequently, in order to deposit NbN films on a patterned mask, we must use a lower dc power, and find
  • another concentration of N2. Because the high temperature induced on the substrate softens the photoresist and pollutes the NbN films. In Figure 4 the section of the 3D-plot of Figure 3 corresponding to a dc power of 200 W is shown. We can see more clearly that a N2 flux of 9 sccm gives NbN film with a Tc
  • the junction area are not far from those reported by other groups for high-temperature deposition of the films and reactive etching for geometry definition. a) Glow-discharge peak intensity monitored in the region of 328–367 nm, an energy region in which we find both Nb and N2 peaks. In the inset the
PDF
Album
Full Research Paper
Published 02 Mar 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • obtain cobalt nanostructures of desired size and shape such as spherical nanoparticles [14][15] synthesized by high-temperature chemical reduction while controlling the pH value, cobalt–polymer composite tubes [16] formed by using alumina templates, cobalt cubes [17] produced in imidazolium ionic liquid
  • strong magnetic dipolar interactions during the evaporation of 6 nm cobalt nanoparticles on oriented pyrolytic graphite [19]. Cobalt wires were obtained by the reduction of cobalt salt at high temperatures [20], and discs were produced by applying high temperature in a mixed surfactant system of oleic
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

  • Giacomo Biagiotti,
  • Vittoria Langè,
  • Cristina Ligi,
  • Stefano Caporali,
  • Maurizio Muniz-Miranda,
  • Anna Flis,
  • K. Michał Pietrusiewicz,
  • Giacomo Ghini,
  • Alberto Brandi and
  • Stefano Cicchi

Beilstein J. Nanotechnol. 2017, 8, 485–493, doi:10.3762/bjnano.8.52

Graphical Abstract
  • reduction, affords a radical species, responsible for the functionalization of the graphitic surface [9]. A useful alternative to this approach is the reaction of azido derivative with CNMs: the high temperature required for the process decomposes the azido group to a reactive nitrene species that react
  • solution at high temperature in microwave. The data obtained are reported in Table 1. From the data reported in Table 1 it is evident the higher reactivity of ox-MWCNTs 4 (entries 3, 5 and 7) respect to GPs 5 (entries 4, 6 and 8) as it was expected considering the different nature of the two substrates [34
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2017
Other Beilstein-Institut Open Science Activities