Search results

Search for "magnetic properties" in Full Text gives 236 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fulleropeptide esters as potential self-assembled antioxidants

  • Mira S. Bjelaković,
  • Tatjana J. Kop,
  • Jelena Đorđević and
  • Dragana R. Milić

Beilstein J. Nanotechnol. 2015, 6, 1065–1071, doi:10.3762/bjnano.6.107

Graphical Abstract
  • voltammetry; FOX assay; fulleropeptide esters; scanning electron microscopy; Introduction Their highly π-conjugated, spherically shaped, hydrophobic character and their unique physicochemical, electronic and magnetic properties make fullerenes attractive building blocks for chemical modifications, providing
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

Interaction of electromagnetic radiation in the 20–200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles

  • Agylych Atdayev,
  • Alexander L. Danilyuk and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2015, 6, 1056–1064, doi:10.3762/bjnano.6.106

Graphical Abstract
  • material are currently the subject of intensive study. The properties of such materials can be tuned by the external magnetic field, spin-polarized current or electromagnetic radiation. In conventional ferromagnetic materials, the magnetic properties are determined by the domain structure and domain walls
  • within the grains. In nanostructured materials, the magnetic properties and the static and dynamic magnetic behavior are controlled by the interparticle exchange interaction, which gives rise to a new generation of devices with improved characteristics and new functionalities. Such magnetic
  • medium [36][37], and was developed to determine the reflection (R) and transmission (T) coefficients of the EMR for nanostructured magnetic composites at frequencies above 1 GHz. It takes into account both the magnetic properties of the NPs and the transport, structural and magnetic properties of the CNT
PDF
Album
Full Research Paper
Published 24 Apr 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • -dimensional (2D) and one-dimensional (1D) Co nanostructures has shown that magnetic properties are highly size dependent, due to the low coordination of the atoms of atomic-scale nanostructures [1][18]. For such nanostructures, enhanced magnetic anisotropy energy (MAE) and orbital moment have been evidenced
  • as compared to the bulk material. Concerning 1D nanostructures, additional effects, especially with regards to magnetic anisotropy, are expected, related to their anisotropic shape [1][19][20]. Since metallic substrates are known to strongly influence the magnetic properties of the supported
  • consisting of a regular array of Si nanoribbons can be used to guide the self-organized growth of identical Co dimer nanolines with a high lateral order. XMCD measurements revealed that the proximity of the Si template does not affect the metallic character of the Co nanostructures. However, the magnetic
PDF
Album
Full Research Paper
Published 19 Mar 2015

Production, detection, storage and release of spin currents

  • Michele Cini

Beilstein J. Nanotechnol. 2015, 6, 736–743, doi:10.3762/bjnano.6.75

Graphical Abstract
  • [5] and also because of the growing role of topological effects in this field. The present paper belongs to a series devoted to the magnetic properties of quantum rings linked tangentially to ballistic circuits. The geometry is explained in Figure 1. If the ring-wire connection is asymmetric, a
  • and possible applications and I hope that this will stimulate experimentalists to work on the magnetic properties of laterally connected quantum rings. Left: Lateral connection of a quantum ring (Nring = 8) to external wires (any even number of sides greater or equal than four can be considered, since
PDF
Album
Full Research Paper
Published 13 Mar 2015

Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

  • Maxim E. Stebliy,
  • Alexander G. Kolesnikov,
  • Alexey V. Ognev,
  • Alexander S. Samardak and
  • Ludmila A. Chebotkevich

Beilstein J. Nanotechnol. 2015, 6, 697–703, doi:10.3762/bjnano.6.70

Graphical Abstract
  • shapes of the loops, as well as the critical fields, are in a good agreement with the experimental data presented in the upper row of Figure 1c. There are several areas with a sharp jump in magnetization at values of H of about 150 and 230 Oe. Magnetic properties of symmetric nanostructures Let us
  • is impossible to reliably control the chirality in the big disk. Magnetic properties of asymmetric nanostructures In the case of asymmetric nanostructures with s ≠ 0, the magnetization reversal depends on the orientation of the field relatively to the direction of s. (Figure 1c, loops and ). The MFM
  • scanning electron (SEM, Supra, Carl Zeiss) and atomic force (AFM, Ntegra Aura, NT-MDT) microscopes. Magnetic properties were studied by using a magneto-optical Kerr effect (MOKE, NanoMOKE II) magnetometer and a magnetic force microscope (MFM, Ntegra Aura, NT-MDT). Micromagnetic simulations were performed
PDF
Album
Full Research Paper
Published 10 Mar 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • ] and for the investigation of magnetic nanostructures [46][47]. In the latter case the magnetic properties as a function of an applied magnetic field as well as time resolved measurements [48] are performed to study the electronic functionalities for example in magnetic random access memories (MRAMS
PDF
Album
Review
Published 27 Feb 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • chemically modified with different targeting agents for a specific delivery of these nanocomposites. 2.1 Lanthanide complexes as both magnetic and fluorescent probe The electronic and magnetic properties of the lanthanide complexes are governed by 4f electrons. In some of the lanthanide complexes, the
  • Gd2(CO3)3:Tb complex was found to be 8–12 nm with high degree of narrow size distribution. The coating with silica was confirmed by HRTEM studies in which the outer material covering the hybrid nanocomposites appeared as a thin layer with diameter of 6 nm. The magnetic properties of the NPs were
  • was also seen in the fluorescence spectra, in which the emission spectra shifted from 610 to 580 nm. Such shift in the absorption and emission spectra was attributed to a possible corrosion of CdTe QDs after silica coating. Magnetic properties of these hybrid nanocomposites were monitored at room
PDF
Album
Review
Published 24 Feb 2015

Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

  • Zhi Chen,
  • Svetlana Klyatskaya,
  • José I. Urgel,
  • David Écija,
  • Olaf Fuhr,
  • Willi Auwärter,
  • Johannes V. Barth and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 327–335, doi:10.3762/bjnano.6.31

Graphical Abstract
  • context, rare-earth elements have been employed for the design of materials with extraordinary magnetic properties [1][2], including single molecular magnets (SMMs) [2][3], which serve as pivotal subunits for modern developments in spintronic devices [4][5][6][7][8][9][10][11][12]. Moreover, in recent
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • excellent magnetization curves leading to T2 and T1 relaxivities during MRI [15][16][17][18][19][20]. Owing to their magnetic properties, they can particularly be used for hyperthermia applications and magnetic targeting through the body [21][22][23][24][25][26][27]. An assembly of multiple nanoparticles to
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

  • Nils Bohmer and
  • Andreas Jordan

Beilstein J. Nanotechnol. 2015, 6, 167–176, doi:10.3762/bjnano.6.16

Graphical Abstract
  • many strategies and specific nanoparticle constructs have been explored in recent years [2][3][4], although only few of them have already made their way into practice [5]. Iron oxide nanoparticles are of special interest because of their magnetic properties, which make them suitable for clinical
PDF
Album
Full Research Paper
Published 14 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • -necklace-like, power law of Q−1), while in the gelatin gel matrix without chitin, the nanoparticles exhibit a branch-like arrangement (power law of Q−2). Magnetization measurements Magnetic properties of the nanocomposite were measured by using a superconducting quantum interference device (SQUID
  • change in the mechanical properties as compared to pure gelatin. This is controllable through the adjustable mineral content. In combination with the superparamagnetic behavior, we have therefore generated a material with improved mechanical performance coupled with magnetic properties. More quantitative
  • , Germany). Measurements were carried out at a heating rate of 5 K/min under a constant oxygen flow. Samples were scanned from 293 K to 1273 K. Magnetization measurements were carried out by using a quantum design superconducting quantum interference device (SQUID) 5 T magnetic properties measurement system
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • nanomedical applications because of their magnetic properties that allow specific targeting of early tumor or arteriosclerotic lesions, which can be closely monitored by magnetic resonance imaging (MRI). In contrast to Qdots, iron-based nanoparticles are known to be less toxic given that iron is an essential
PDF
Album
Full Research Paper
Published 09 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • the external magnetic field. A superconducting quantum interference device (SQUID) magnetometer analysis was carried out and revealed that the magnetic properties of the BNNTs were related to the Fe catalysts. Considering the magnetic properties and the ability to bind molecules on a large surface
  • composites in the presence and absence of a magnetic field [84]. The BNNT–NaGdF4:Eu composites simultaneously show fluorescent and magnetic properties. Thus, imaging and targeting of the composites can be more easily achieved. Human LNCaP prostate cancer cells were treated with the BNNT–NaGdF4:Eu composites
PDF
Album
Review
Published 08 Jan 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • with biological systems, and thereby offers unique application possibilities [20]. All these factors affect the chemical reactivity of nanosized materials as well as their mechanical, optical, electric, and magnetic properties [21]. Nanoparticles offer numerous possibilities of application as catalysts
PDF
Album
Review
Published 15 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum. Keywords: bioimaging (CT; MRI; Multi-photon); hetero-nanoparticles; Janus particles; protein corona; synthesis; Introduction In the recent years, there has been an increasing interest in design
  • the chosen components enabling separate and selective surface functionalization [36][37][38][39] in addition to the intrinsic multifunctionality due to the combination of the two inorganic components (e.g., combination of optical and magnetic properties), (ii) directed self-assembly, achieved by
  • “nanoflowers” were shown to combine optical and magnetic properties and, therefore, to be suitable for dual imaging [58]. Cu@Fe3O4 as well as Co@Fe2O3 combine magnetic and optical properties useful for simultaneous optical and magnetic imaging. Additionally, the magnetic properties may be enhanced due to the
PDF
Album
Review
Published 05 Dec 2014

Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation

  • Julie Jung,
  • Olivier Cador,
  • Kevin Bernot,
  • Fabrice Pointillart,
  • Javier Luzon and
  • Boris Le Guennic

Beilstein J. Nanotechnol. 2014, 5, 2267–2274, doi:10.3762/bjnano.5.236

Graphical Abstract
  • calculations have been used to reconsider the magnetic properties of a recently reported DyIII-based single-molecule magnet, namely [Dy(hfac)3(L1)] with hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate and L1 = 2-(4,5-bis(propylthio)-1,3-dithiol-2-ylidene)-6-(pyridin-2-yl)-5H-[1,3]dithiolo[4',5':4,5]benzo[1,2-d
  • transferable into single-molecule devices. Keywords: ab initio calculations; dysprosium; magnetic properties; single-molecule magnets; supramolecular effects; Introduction At the molecular level, single-molecule magnets (SMMs) can be seen as magnets in which the magnetic information relies on the magnetic
  • moment of the molecule and its magnetic anisotropy [1]. Most of SMMs have been characterized as bulk crystalline material in which intermolecular magnetic interactions are expected to be negligible when compared to the intramolecular ones. The magnetic properties of a compound have then a molecular
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2014

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • from magnetic studies. Consequently, the authors affirm that the grafting process did not significantly affect either the morphology or the magnetic properties of the NPs. In this system, the luminescent signal from the dansyl is quenched by the Fe(II) low-spin state (LS) centers of the coordination
  • the integration of SCO materials in bimorph cantilevers, which were actuated both thermally and by light irradiation [42]. While these systems used macroscopic materials, in principle, true nanoscale operation is also possible. Exciting strain-induced coupling of SCO with electrical [43] and magnetic
  • properties [44] has also been very recently reported using polymer composite and multilayer heterostructure systems, respectively. Finally, let us note that spintronics may also benefit from SCO nanohybrids as was highlighted by a scanning tunneling microscopy experiment [45]. Classification of core–shell
PDF
Album
Review
Published 25 Nov 2014

In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

  • Fabio Lupo,
  • Cristina Tudisco,
  • Federico Bertani,
  • Enrico Dalcanale and
  • Guglielmo G. Condorelli

Beilstein J. Nanotechnol. 2014, 5, 2222–2229, doi:10.3762/bjnano.5.231

Graphical Abstract
  • physical properties of M–Pc can be easily tuned by varying the nature of the coordinated metal, thus making phthalcyanine-based systems suitable for a wide range of applications. In particular, transition metal Pc have attracted great interest for their optical and magnetic properties [8][17] as well as
PDF
Album
Full Research Paper
Published 25 Nov 2014

UHV deposition and characterization of a mononuclear iron(III) β-diketonate complex on Au(111)

  • Irene Cimatti,
  • Silviya Ninova,
  • Valeria Lanzilotto,
  • Luigi Malavolti,
  • Luca Rigamonti,
  • Brunetto Cortigiani,
  • Matteo Mannini,
  • Elena Magnano,
  • Federica Bondino,
  • Federico Totti,
  • Andrea Cornia and
  • Roberta Sessoli

Beilstein J. Nanotechnol. 2014, 5, 2139–2148, doi:10.3762/bjnano.5.223

Graphical Abstract
  • films of [Fe4(Ph-C(CH2O)3)2(dpm)6] (Fe4Ph) [12], a tetrairon(III) star-shaped SMM that can be sublimated in vacuum conditions. This class of molecules provided the first evidence that SMMs can retain their memory effect once grafted onto a metallic substrate. The magnetic properties of individual Fe4
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • TbPc2/Co heterojunction was already proposed to serve as a model system for a SMM semiconducting layer on top of a ferromagnetic electrode for a future spintronic device. The chemical and magnetic properties of this interface were investigated by Klar et al. and it was found that the magnetic moment of
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • their magnetic properties [19]: Given the coupling between the spin state and luminescence, the luminescence of NDs can be modulated by local magnetic fields [20][21]. Graphene: Graphene is a mono-atomic, two-dimensional, sheet of sp2-hybridised carbon atoms arranged as a honeycomb lattice. Since the
PDF
Album
Correction
Review
Published 23 Oct 2014

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • . In each of these cases, a fundamental understanding of the electronic and magnetic properties was obtained by means of high-quality ab initio methods. In this work, we present an ab initio investigation of the MIL-47(V) MOF [1] (cf. Figure 1a). The were three reasons to chose this particular MOF: (1
  • ) The topology of MIL-47(V) provides access to 1D metal-oxide chains. (2) The V version provides one unpaired electron per metal site, which is of interest for magnetic properties. (3) MIL-47 belongs to the family of so-called breathing MOFs [4][11][43][44][45][46][47][48][49], leading to interesting
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • (magnetite Fe3O4 or maghemite γ-Fe2O3) are their simple preparation and their magnetic properties, which are necessary for detection. Moreover, it is convenient that iron oxides are readily metabolized in the body. From this point of view, quantum dots are disqualified due to their toxicity. Like in every
PDF
Album
Full Research Paper
Published 08 Oct 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • emergence of magnetic properties in the system [20][21]. Whilst these findings are certainly interesting, their scalability, and hence commercial application, is prohibited by the standard of precision that must be met in order to produce such materials. Circumventing these problems using nitrogen doped
PDF
Album
Review
Published 05 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014
Other Beilstein-Institut Open Science Activities