Search results

Search for "morphology" in Full Text gives 1176 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • disulfide (MoS2) was prepared on substrates coated with fluorine-doped tin oxide (FTO) to substitute the platinum counter electrode (CE) for dye-sensitized solar cells (DSSCs). Herein, we synthesized layered and honeycomb-like MoS2 thin films via the cyclic voltammetry (CV) route. Thickness and morphology
  • of the MoS2 thin films were controlled via the concentration of precursor solution. The obtained results showed that MoS2 thin films formed at a low precursor concentration had a layered morphology while a honeycomb-like MoS2 thin film was formed at a high precursor concentration. Both types of MoS2
  • conventional Pt/FTO CE (15.3 mA·cm−2). This work reports for the first time the possibility to obtain a honeycomb-like MoS2 thin film morphology by the CV method and investigates the effect of film structure on the electrocatalytic activity and photovoltaic performance of CEs for DSSC application. Keywords
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • ethanolic or glycolic extracts of Brazilian green PRP. A 32 full-factorial design was utilized to determine the influence of P407 and PRP extract on the morphology and mechanical characteristics of MNs. They were characterized macroscopically, microscopically, and regarding size and texture, yielding an
  • morphological characteristics of the preparations were evaluated by SEM (Figure 3 and Figure 4), which confirmed the uniform and regular morphology of the needles. Micrographs of the formulations revealed polymeric fragments with well-defined, homogeneous structures, showing that the preparation used to obtain
  • time, the design of MNs composed of PVA, PVP, and P407 as a polymeric platform for the delivery of alcoholic and glycolic green propolis extracts. MN formulations were characterized regarding their morphology, dimensions, and mechanical properties. Selected MN formulations (E3, E6, E9, and G6
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • anthralin against psoriasis and reduce its side effects, various liposomal and ethosomal formulations were prepared with different compositions and characterized in terms of drug encapsulation efficiency, size, and morphology. The determined optima formulations were distributed on various gel bases and drug
PDF
Album
Full Research Paper
Published 31 May 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • methods used for obtaining ZnO nanoparticles, solution synthesis methods such as sol–gel [22], chemical precipitation [23], polyol [24], and solvothermal [25] methods, are inexpensive, consume little energy, allow for a facile control of physical characteristics and morphology of the nanoparticles, offer
  • controllable morphology [28]. Various morphologies including nanoworms, nanowires, and nanorods with excellent crystallinity were also obtained using the solvothermal method [25]. According to Chieng et al., the particle sizes of the synthesized ZnO nanoparticles are in correlation with the glycol chain length
  • conditions involved in the hydrothermal synthesis of ZnO make it an attractive growth method, widely used in recent years. A comprehensive review indicating the morphology of ZnO nanostructures grown using this method is given in [30]. Successful examples of ordered ZnO nanorods [6], one of most common ZnO
PDF
Album
Review
Published 27 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • detection of H2O2. The article proves the higher efficiency of nanostructured electrodes compared to electrodes with less developed surface. The article shows the influence of the time of hydrothermal synthesis on the morphology of nanostructures and, as a result, the change in the sensitivity of the sensor
  • distilled water in order to get rid of residual reagents, and then dried in an oven at 90 °C for 3 h in order to remove moisture. To compare the dependence of the sensitivity of nanostructured samples on their morphology, samples were obtained after 1 and 6 h of synthesis time. The morphology of the surface
  • diluted in a 1:2 ratio with 0.1 M NaOH buffer solution. The resulting solution was maintained at pH 12.7. The amperometric response method was used for the analysis with U = −0.7 V vs Ag/AgCl. Results and Discussion CuO structure The morphology of CuO is shown in Figure 1. The SEM image (Figure 1a,b
PDF
Album
Full Research Paper
Published 03 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • analysis. Further, statistical classification analysis was implemented for the evaluation of target gases. Scanning electron microscopy and Raman spectroscopy The surface morphology and uniformity of additives in PANI of the deposited active layers were examined by scanning electron microscopy (TESCAN
PDF
Album
Full Research Paper
Published 27 Apr 2022

Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

  • Chuchu Li,
  • Stanislav N. Gorb and
  • Hamed Rajabi

Beilstein J. Nanotechnol. 2022, 13, 404–410, doi:10.3762/bjnano.13.33

Graphical Abstract
  • Chuchu Li Stanislav N. Gorb Hamed Rajabi Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK 10.3762/bjnano.13.33 Abstract Cuticle is one of the
PDF
Album
Full Research Paper
Published 22 Apr 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • increases the device density and can be used in nonvolatile high-density memory devices. The properties such as diameter, length, morphology, and structure of CNTs directly affect the pull-in voltage and repeatability. Bridge model: The typical structure of the bridge model is shown in Figure 2a. In 2006
PDF
Album
Review
Published 12 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • supports deeper layers from shear stresses [5]. The middle or transitional zone constitutes the thickest portion of articular cartilage (40–60%) and has fewer chondrocytes with a more rounded morphology [6]. In this layer, the collagen fibrils are arranged randomly and obliquely and the cells synthesize
PDF
Album
Review
Published 11 Apr 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • morphology of the surface and cross section of the deposited thin films was investigated using a FEI Helios NanoLab 600i scanning electron microscope coupled with an energy-dispersive X-ray spectrometer (EDS) to determine the amount of Al and Zn in the deposited films (without taking the oxygen signal into
  • the distance from the target axis is shown in Figure 9b. SEM images of the surface morphology at different distances from the target axis are shown in Figure 10. All films were densely packed, homogeneous, and crack-free. For X ≤ 30 mm, the surface is featureless and no grains are visible. Thin films
PDF
Album
Full Research Paper
Published 31 Mar 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • -ray diffraction were measured on a Rigaku Ultima IV with Cu Kα radiation (λ = 1.5418 Å) to check the crystallinity of the synthesized ZIF-8 thin films. The morphology of the supports, the free-standing thin films, and the supported membranes was observed by FE-SEM (NovaTM NanoSEM 230). The elemental
  • compared with interfacial synthesis. Defects were observed in the intercrystal gaps on the membrane, and the morphology of the resultant ZIF-8 was different from the one obtained via the interfacial method (Figure 7a) [44]. This is because 1-octanol in the interfacial method facilitated 2-methylimidazole
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • , such as template forming, plasma treatment, and chemical approaches. Previous studies mostly focused on the preparation process of the nanoscale morphology on the polymer surface [47][48][49]. The electrons on the polymer surface cannot be transferred to the conduction band and the charge cannot flow
  • freely. Therefore, there is no high charge density on the tip surface of the polymer surface. Here, size and morphology of nanoscale copper were controlled by adjusting current density, temperature, pH value, and solution concentration during electrodeposition. The effects of different morphologies and
  • agglomerate. Results and Discussion The XRD data (Figure 4) were processed using the JADE software to calculate the average particle sizes. SEM micrographs were screened according to the surface morphology size of the nanoparticles and colored according to the nanoscale topography size (Figure 5 and Figure 6
PDF
Album
Full Research Paper
Published 15 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • matrix proteins on the physical properties of the respective nanoparticles. Specifically, this work systematically explores the relationship between SPNP formulation parameters and nanoparticle morphology, while also providing detailed insights into size distributions and uniformities. Results and
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • treatment of cutaneous melanoma has remained unknown. In this study, we synthesized Fe3O4 superparamagnetic nanoparticle clusters, examined their morphology by scanning electron microscopy (SEM) and tested their capacity of light-to-heat conversion. Then, we evaluated the effectiveness of the as-synthesized
  • morphology of the as-synthesized nanoparticle clusters was characterized with a JEOL JEM-2100 transmission electron microscopy (TEM). Dynamic light scattering (DLS) The synthesized Fe3O4 NPCs were diluted in RPMI 1640 medium to a final concentration of 0.25 mg/mL. The particle size distribution was
  • . Characterization of the superparamagnetic Fe3O4 nanoparticle clusters. (a) TEM image revealing cubic morphology of individual Fe3O4 nanoparticles with a uniform diameter of ca. 5.2 nm. Scale bar: 20 nm. (b) SEM image of clustered Fe3O4 nanoparticles with an average diameter of 329.2 nm. Scale bar: 1 µm. (c
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • concentration (4–12%) and addition of PLGA (20–80%) on the spinnability of the solutions, morphology, average nanofiber diameter, encapsulation efficiency, drug release, and mechanical properties of PLA and PLA/PLGA nanofibers were examined. All nanofibers were bead-free and uniform. They had favorable
  • desired properties (average nanofiber diameter, morphology, in vitro drug release, and mechanical properties) of PLA nanofibers. Keywords: ampicillin trihydrate; electrospinning; nanofiber; PLA nanofiber; PLA/PLGA nanofiber; Introduction Polymeric nanofibers have been widely used in many fields such as
  • ampicillin trihydrate-loaded implantable PLA and PLA/PLGA polymeric nanofibers for controlled drug release with favorable properties for the use in tissue engineering. In this study, ampicillin trihydrate-loaded PLA and PLA/PLGA nanofibers with acceptable morphology, nanofiber diameter, mechanical properties
PDF
Album
Full Research Paper
Published 21 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • , pitting is always distributed along a line. Wang et al. [26] found that pitting occurs preferentially at the shear offsets on a pre-deformed Zr-based MG due to the higher chemical activity of offset sites compared with the surrounding flat region. This influence of surface morphology was also shown for
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • is performed in 100% water. Furthermore, the water content in the solvent affects the general morphology of the product: While dispersed NPs are obtained in pure ethanol or methanol, adding water leads to the formation of network-like structures as reported in Figures S2–S18 (Supporting Information
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • generated free electrons (e−) react with molecular oxygen to generate superoxide radicals by reduction. Several factors contribute to the photocatalytic performance of TiO2, such as the structural phase (anatase, brookite, or rutile), defects in the lattice, the degree of crystallinity, morphology
PDF
Album
Review
Published 14 Feb 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • diffraction analyses were used to study the morphology and to confirm the beta phase in fibers. The results reveal that the nanofibers made from solutions with high concentration were smooth and defect-free, compared to the fibers obtained from solutions with low concentration, and possess high crystallinity
  • characterized through scanning electron microscopy (SEM) and X-ray diffraction (XRD) to determine morphology and crystalline structure, respectively. Sensor development, its embedding, and testing The prepared PVDF nanofibrous mesh was folded into a square shape (4 cm2) with 2 mm thickness for sensor
  • lockstitch machine. The sensor was worn on the knee and the bending angle of the knee was changed from 0° to 45°, 90°, and 120° to check the piezoelectric output with a digital oscilloscope. Results and Discussion SEM analysis SEM was used to study the diameter and morphology of PVDF nanofibers developed
PDF
Album
Full Research Paper
Published 07 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • Parameters affecting fiber size, morphology, and structures The size and the morphology of the electrospun fibers can be controlled by the precise regulation of several parameters, which are classified into three categories, that is, process parameters, solution parameters, and ambient parameters. The
  • results are obtained after changes of parameters. 3.1 Process parameters 3.1.1 Applied voltage. The applied voltage is one of the most critical parameters that affect fiber morphology. The applied voltage aids the polymer to overcome its surface tension and form the polymer jet. After forming the Taylor
  • collector distance was reduced, while the ribbon shaped morphology was preserved [26]. The combination of applied voltage and spinning distance is important. Longer distances allow for a greater time for jet stretching and solvent evaporation at low applied voltages, but they diminish the electric field (E
PDF
Album
Review
Published 31 Jan 2022

A photonic crystal material for the online detection of nonpolar hydrocarbon vapors

  • Evgenii S. Bolshakov,
  • Aleksander V. Ivanov,
  • Andrei A. Kozlov,
  • Anton S. Aksenov,
  • Elena V. Isanbaeva,
  • Sergei E. Kushnir,
  • Aleksei D. Yapryntsev,
  • Aleksander E. Baranchikov and
  • Yury A. Zolotov

Beilstein J. Nanotechnol. 2022, 13, 127–136, doi:10.3762/bjnano.13.9

Graphical Abstract
  • organic solvents that are used in some construction materials. This article contains an overview of how 3D photonic crystals are used for the creation of a new test system for nonpolar organic solvents. The morphology and structural parameters of the photonic crystals, based upon a crystalline colloidal
  • Determination of the morphology and the structural parameters of the sensor A comparison between the specular reflectance and the diffuse reflectance spectra tested in the “specular component included (SCI)” and “specular component excluded (SCE)” modes has shown (Figure 1a) that the maximum of the diffuse
PDF
Album
Full Research Paper
Published 25 Jan 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • . Additionally, HbMP were prepared with a spiked hemoglobin solution as well as under standard process conditions as a control. Hemoglobin microparticles – size, zeta potential, morphology In addition to particle preparation with spiked hemoglobin, particles were also prepared using the standard protocol. The
PDF
Album
Full Research Paper
Published 24 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • morphology. Recent studies have been focused on the modification of properties of SnO2 to increase the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation, surface engineering, heterojunction construction, and using co-catalysts, which will be thoroughly highlighted in this
  • morphology [25][26][27][28][29][30]. However, pure SnO2 suffers from some inherent drawbacks that limit its practical applications. With a wide bandgap (3.5–3.7 eV) [31][32], SnO2 can only be excited by UV irradiation. As a typical oxidation photocatalyst with the CB edge energy level, which is not conducive
  • depends on many factors, including the structure and energy band, surface and defect states, morphology, etc. For that reason, recent studies are being focused on the modification of properties of SnO2 to upgrade the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • reproducibility of the colloidal synthesis, especially during the synthesis of NPs with non-spherical morphology [4]. Dust. Dust particles present in the solvent affect the size distribution of formed NPs [77]. Filtration of reagents allows for obtaining NPs with narrow size distribution [112]. Because SoL is a
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • regulation of cell activity, and hence to the health level of organisms. Here, the morphology and mechanical properties of normal pancreatic cells (HDPE6-C7) and pancreatic cancer cells (AsPC-1, MIA PaCa-2, BxPC-3) were studied by atomic force microscopy. In addition, the mechanical properties of MIA PaCa-2
  • ultrastructure of living cells [15][16], cell membranes, membrane proteins [17][18] and DNA [19], and through recording single molecular force spectra [20][21]. However, the morphology and the nanoscale mechanical properties of malignant pancreatic cancer cells (PCCs) under anticancer drug treatment have not
  • < 0.001. Results and Discussion The nanostructure of different types of cells The morphology of different types of cells characterized by laser confocal microscopy is shown in Figure 2a–d. It is apparent that HPDE6-C7 cells are oval or round with a cell size of tens of micrometers (Figure 2a). BxPC-3
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021
Other Beilstein-Institut Open Science Activities