Search results

Search for "platinum" in Full Text gives 320 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • increased absorption window, FRET-enhanced photocurrent and the prevention of SQ2 aggregation. Experimental Reagents TiO2 nanoparticles (21 nm), protoporphyrin IX (PPIX), platinum chloride (H2PtCl6), lithium iodide (LiI), 4-tert-butylpyridine (TBP) and iodine (I2) were purchased from Sigma-Aldrich. Squarine
  • sensitized DSSCs are named SQ2_PPIX and PPIX_SQ2 according to the sequence of dye used for sensitization. To ease the comparison, the total immersion time was 24 h during both mixed-dye sensitization and sequential sensitization. The counter electrodes were prepared by depositing platinum on the FTO
  • substrates via thermal decomposition of 5 mM platinum chloride (in isopropanol) at 385 °C for 30 min. 60 μm thick Surlyn was used as a spacer between the active and counter electrodes. The I−/I3− redox couple, which was prepared by mixing iodine crystal (I2), lithium iodide (LiI), and 4-tert-butylpyridine
PDF
Album
Full Research Paper
Published 17 Aug 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • the hollow nanostructure. As noted above, PVP is widely used as a colloidal stabilizer to inhibit the aggregation of metal nanoparticles such as gold [49][50][51][52], silver [53][54], platinum [55][56][57], palladium [46][57][58][59], nickel [60][61], and cobalt [62][63]. To verify this hypothesis in
PDF
Album
Full Research Paper
Published 14 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • . Oxidized PAN nanofiber mats were used as free standing working electrodes, a platinum wire was used as counter electrode, and a silver wire was used as pseudo-reference electrode. EIS data were simulated with electrical equivalent circuit by using the ZSimpWin V.3.10 analysis program. Experimental and
PDF
Album
Full Research Paper
Published 07 Aug 2017

Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 1546–1552, doi:10.3762/bjnano.8.156

Graphical Abstract
  • gas hourly space velocity (GHSV) and initial CO concentration. Keywords: CO oxidation; copper; nanoparticles; platinum; solution combustion; zirconia; Introduction The catalytic oxidation of carbon monoxide (CO) is of potential interest in applications such as CO sensors, carbon dioxide (CO2) lasers
PDF
Album
Full Research Paper
Published 31 Jul 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • adhesion of this polymer to different substrates. According to the literature Parylene C exhibits a satisfactory adherence to gold, platinum and silicon nitride [61], which is, however, in contradiction to older reports [62][63]. Its adherence to polyimide, on the other hand, is found to be very low [61
PDF
Album
Review
Published 28 Jul 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • , Szczecin, Poland 10.3762/bjnano.8.151 Abstract We present an ink platform for a printable polymer–graphene nanocomposite that is intended for the development of modular biosensors. The ink consists of catechol-modified chitosan and reduced graphene oxide decorated with platinum nanoparticles (rGO–Pt). We
  • . First, we prepare dispersions of reduced graphene oxide (rGO) decorated with platinum nanoparticles (rGO–Pt) in ethylene glycol (EG). As the polymer matrix, we utilize chitosan (CHI), a polycationic biopolymer that provides excellent film-forming properties and easy-to-functionalize amine groups [8
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity

  • Svitlana Prylutska,
  • Svitlana Politenkova,
  • Kateryna Afanasieva,
  • Volodymyr Korolovych,
  • Kateryna Bogutska,
  • Andriy Sivolob,
  • Larysa Skivka,
  • Maxim Evstigneev,
  • Viktor Kostjukov,
  • Yuriy Prylutskyy and
  • Uwe Ritter

Beilstein J. Nanotechnol. 2017, 8, 1494–1501, doi:10.3762/bjnano.8.149

Graphical Abstract
  • lymphocytes and reduces the fraction of necrotic cells. Keywords: atomic force microscopy; C60 fullerene; cisplatin; comet assay; computer simulation; dynamic light scattering; flow cytometry; human lymphocytes; toxicity in vitro; Introduction The water-soluble inorganic bi-valent platinum derivative
  • HyperChem 8.0 according to Wysokiński et al. [42] and then optimizated in Gaussian 09W at the mPW1PW hybrid level of theory [43] in LanL2DZ basis set [44]. This level of theory and basis set is considered to be optimal for quantum-mechanical calculations of the molecules containing platinum atoms, in
PDF
Album
Full Research Paper
Published 20 Jul 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • of two types of poly-p-xylylenes, which are commercially named parylene™ N and parylene™ C, respectively) were found to deactivate on several high-energy surfaces of several transition metals such as iron, copper, silver, platinum, and the salts of these metals. The monomer deactivation inhibits the
PDF
Album
Review
Published 04 Jul 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • , Dresden 01171, Germany 10.3762/bjnano.8.132 Abstract We have previously shown that carbon nanofibers (CNFs) and carbon nanotubes (CNTs) can sensitize prostate cancer (PCa) cells to platinum-based chemotherapeutics. In order to further verify this concept and to avoid a bias, the present study
  • investigates the chemosensitizing potential of CNFs and CNTs to the conventional chemotherapeutics docetaxel (DTX) and mitomycin C (MMC), which have different molecular structures and mechanisms of action than platinum-based chemotherapeutics. DU-145 PCa cells were treated with DTX and MMC alone or in
  • contrast, the dose of platinum-based chemotherapeutics could only be reduced by up to 3-fold by combination with carbon nanomaterials. Furthermore, combinatory treatments with CNFs led mostly to an additive inhibition of short- and long-term proliferation compared to the individual treatments. Also, higher
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • functional devices. Interdigited platinum electrodes were deposited on top of nanowires by DC magnetron sputtering (70 W, 5 × 10−3 mbar, argon plasma, room temperature, 1 μm thickness). On the back side of the alumina substrates, platinum heating elements were deposited using the same sputtering technique
PDF
Album
Full Research Paper
Published 06 Jun 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • to the particular two-terminal setup [54] and electrode geometry but allow relative comparisons of the tested electrode materials. Figure 7 shows the current density resulting from a positive potential applied to the entire cell (anode + cathode) of 1.50 V. Both platinum coated electrode (PVD and
  • (normalized as a function of the RVC area) generated by the 10 nm MoS2 coating is identical to the blank (RVC without coating) (0.41 A/m2). On the contrary, the 100 nm MoS2 coated electrode and both platinum RVC are 35 to 40% more efficient regarding the generated current density (0.55–0.57 A/m2). The current
  • produced by the MoS2 coatings depends on their thickness, whereas almost identical values have been obtained for the two 25 and 50 nm thick platinum coatings. The RVC coatings were also compared in terms of mole of hydroxide produced. The quantity of hydroxide produced during the entire time of the process
PDF
Album
Full Research Paper
Published 22 May 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • , grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt–C deposits. Notably, we demonstrate: 1) higher platinum concentration
  • critical electron, precursor, and laser parameters necessary to maintain high fidelity while simultaneously promoting high purity and low electrical resistivity. Experimental Electron beam induced deposition Platinum nanostructures were grown onto a silicon substrate from the MeCpPt(IV)Me3 precursor gas
  • difference between as-deposited EBID structures and the laser treated structures. Here, Pt-rich regions are the relatively dark regions in the BF STEM images. Most notably, laser exposure induces platinum particle consolidation and growth while simultaneously driving a reduction in segment volume associated
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • -act X-ray detector. Prior to measurements the samples were coated with a 100 nm carbon layer using a POLARON CC7650 Carbon Coater. Electrochemical impedance spectroscopy (EIS). For EIS the dry IGs were contacted with a graphite paper layer and sandwiched between platinum electrodes. The graphite paper
  • layer was used as a sacrificial layer (used one time for one sample) to avoid a direct contact with the platinum electrode. Even though the IGs are rather stable, their surfaces may be slightly sticky; this especially applies at higher temperatures. The roughness between the graphite and ionogel is
PDF
Album
Full Research Paper
Published 29 Mar 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • -like structures formed in 2 mg/mL and 5 mg/mL solutions. The analysis was performed using NANO DSC Series III System (model 6300) with Platinum Capillary Cell (TA Instruments) equipped with Nano DSCRun software. In order to avoid the formation of air bubbles during the heating, the samples were
PDF
Album
Full Research Paper
Published 16 Mar 2017

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • , a gold or palladium sacrificial anode, used as the working electrode. A platinum cathode was used as the counter electrode. The electrolyte solution was composed of quaternary ammonium halide (0.05 M) dissolved in a 3:1 mixture of tetrahydrofuran and acetonitrile. Specifically, the quaternary
PDF
Album
Full Research Paper
Published 10 Mar 2017

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • typical energy levels of PCDTBT, PCBM and PEDOT:PSS were used to draw the energy diagrams in Figure 5b–d. Since the tip is exposed to air, we used 4.25 eV for the work function of platinum [30]. Because the tip diameter is several times smaller than the thickness of the active layer, the electric field is
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • chemical bonding in platinum–graphene systems were observed when Pt nanoclusters were chemically bonded to point defects of graphene sheets. Furthermore, the adsorption of an O2 molecule onto a platinum nanocluster which was chemically bound to graphene resulted in a large influence on the charge density
PDF
Album
Full Research Paper
Published 07 Mar 2017

Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

  • Massimiliano Lucci,
  • Ivano Ottaviani,
  • Matteo Cirillo,
  • Fabio De Matteis,
  • Roberto Francini,
  • Vittorio Merlo and
  • Ivan Davoli

Beilstein J. Nanotechnol. 2017, 8, 539–546, doi:10.3762/bjnano.8.58

Graphical Abstract
  • platinum electrode at fixed distance of 1 cm parallel to the sample surface. A systematic study on different thicknesses (depending on Vs) was performed to obtain a compact layer without defects and cracks. The anodized films were also characterized by Auger spectroscopy to analyze compounds formed on the
PDF
Album
Full Research Paper
Published 02 Mar 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • . in their study on platinum nanocrystals on silica surfaces [42]. In another study it was observed that when copper nanoparticles are deposited on silicon surfaces and oxidized at high temperatures to form CuO, the shape of the CuO particle appeared lamellar [43]. The thermal annealing in the oxygen
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • accumulation of the positive charges and to receive contrasting images, the surface of the samples was covered with a thin continuous layer of gold or platinum by cathodic sputtering in vacuum. The morphology of the obtained samples was also studied by Hitachi TM-1000 tabletop microscope capable of energy
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents

  • Antoine R. M. Dalod,
  • Lars Henriksen,
  • Tor Grande and
  • Mari-Ann Einarsrud

Beilstein J. Nanotechnol. 2017, 8, 304–312, doi:10.3762/bjnano.8.33

Graphical Abstract
  • prior to analysis. Particle sizes were estimated from the surface area assuming non-porous and spherical particles. Fourier-transform infrared (FTIR) spectra were acquired on a Bruker Vertex 80v FTIR equipped with Bruker Platinum ATR diamond system from 400 to 4000 cm−1, under medium vacuum (280 Pa). A
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2017

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • of the photoelectrode is to collect the injected electrons from the excited dye absorbed by the semiconductor layer and to transport the electrons to the external load. The second main part of the structure is the counter electrode formed by a thin layer of platinum coated on TCO to accelerate the
PDF
Album
Full Research Paper
Published 30 Jan 2017

Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 264–271, doi:10.3762/bjnano.8.29

Graphical Abstract
  • oxygen mobility and oxygen vacancies and improves the activity and stability of the catalyst. The effects of gas hourly space velocity (GHSV) and initial CO concentration on the CO oxidation over Pt(1%)-ZrO2 were studied. Keywords: CO oxidation; nanomaterials; platinum; solution combustion method
PDF
Album
Full Research Paper
Published 26 Jan 2017

Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

  • Anurag Roy,
  • Partha Pratim Das,
  • Mukta Tathavadekar,
  • Sumita Das and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2017, 8, 210–221, doi:10.3762/bjnano.8.23

Graphical Abstract
  • followed by 0.05 M Na2S solution in ethanol on the FTO glass (7 Ω/cm2) and fired at 420 °C for 20 min. [34][35]. In some cases, a platinum counter electrode was also used. Characterization of CdS NPs The structural properties of dried CdS powder were characterized using X-ray diffraction (XRD) analysis on
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • (SEM). The cross-section was created with a focused ion beam (FIB). To protect the cutting edge, a layer of platinum was added on top of the sample. The structure itself is emphasized because of charging effects at the PDMS material border. For optical enhancement dotted guiding lines were drawn into
  • the cross-section. The TiO2 layer is non conductive, therefore features as small as the average particle size (≈21 nm) cannot be seen in the scan. The high index layer can be identified as the dark layer between the structured PDMS substrate and the conductive platinum protection layer on top. It
PDF
Album
Full Research Paper
Published 20 Jan 2017
Other Beilstein-Institut Open Science Activities