Search results

Search for "resolution" in Full Text gives 1289 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • (SEM, FEI Quanta 3D FEG) at an acceleration voltage of 15.0 kV. An EDS system attached to the SEM was employed to analyze the chemical composition. TEM, high-resolution TEM (HRTEM) images, and SAED measurements were carried out in an FEI Tecnai G2-20 S-TWIN operated at 200 kV in a bright-field (BF) TEM
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • top surface of the laser-processed Ti6Al4V sample through structural color effects, that is, optical diffraction of the ambient light at the sub-micrometric grating-like LIPSS. High-resolution optical microscopy (OM) confirmed the presence of LSFL-LIPSS with average spatial periods Λ between 700 and
  • [16]). (b) Photography of the cosmopolitan feather-legged lace weaver Uloborus plumipes (body size up to 0.6 cm [17]). (c) Scanning electron micrograph of the calamistrum of Jamberoo johnnoblei (body size up to 0.8 cm [18]). (d) FIB-cut high resolution SEM image through the nanoripples on the
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This paper reviews the latest research results in metal, carbon nanotube, and colloidal probes and reviews their related methods and techniques, analyses the advantages
  • and disadvantages of the improved probes compared with ordinary probes by comparing the differences in spatial resolution, sensitivity, imaging, and other performance aspects, and finally provides an outlook on the future development of AFM probes. This paper promotes the development of AFM probes in
  • mechanical properties of the cantilever beam directly affect the performance, measurement resolution, and image quality of the AFM instrument. AFM probe tips [9][10] are generally fabricated with coatings, carbon nanotubes, magnetic nanoparticles, or even protein functionalization. A combination of probe
PDF
Album
Review
Published 03 Nov 2022

A super-oscillatory step-zoom metalens for visible light

  • Yi Zhou,
  • Chao Yan,
  • Peng Tian,
  • Zhu Li,
  • Yu He,
  • Bin Fan,
  • Zhiyong Wang,
  • Yao Deng and
  • Dongliang Tang

Beilstein J. Nanotechnol. 2022, 13, 1220–1227, doi:10.3762/bjnano.13.101

Graphical Abstract
  • years, the super-oscillation method based on the fine interference of optical fields has been successfully applied to sub-diffraction focusing and super-resolution imaging. However, most previously reported works only describe static super-oscillatory lenses. Super-oscillatory lenses using phase-change
  • two focal lengths within a certain field of view. The designed device consists of nanopillars with high efficiency of up to 80%, and the super-resolution focusing with 0.84 times of diffraction limit is verified by the full-wave simulation. The proposed method bears the potential to become a useful
  • tool for label-free super-resolution microscopic imaging and optical precision machining. Keywords: geometric phase; phase-change material; step-zoom lens; super-oscillatory; Introduction Due to the diffraction limit, conventional optical imaging systems are unable to surpass a theoretical resolution
PDF
Album
Full Research Paper
Published 28 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • electrodes for (1) the anode and (2) the cathode. (f) Infrared spectra of g-PDA near (1) the anode and (2) the cathode. (g) High-resolution C 1s spectra of the g-PDA film for (1) the anode and (2) the cathode. Figure 8e–g were reprinted with permission from [84], Copyright 2019 American Chemical Society
PDF
Album
Review
Published 25 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • properties of the materials. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) were used to assess the morphology of the materials. The crystal phase of the materials was determined by X-ray diffraction (XRD) with a measurement range of 10°–80°. Fourier
  • -transform infrared spectroscopy (FTIR) was used to determine the chemical bond composition of the materials. Differential reflectance spectroscopy (DRS) determined the change in the bandgap of the materials. The elements of the materials were identified by high-resolution X-ray photoelectron spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • Cantilever-based atomic force microscopy (AFM) performed under ambient conditions has become an important tool to characterize new material systems as well as devices. Current instruments permit robust scanning over large areas, atomic-scale lateral resolution, and the characterization of various sample
  • properties using multifrequency and multimodal AFM operation modes. Research of new quantum materials and devices, however, often requires low temperatures and ultrahigh vacuum (UHV) conditions and, more specifically, AFM instrumentation providing atomic resolution. For this, AFM instrumentation based on a
  • cantilever-based AFM offers experimental flexibility by permitting multimodal or multifrequency operations with superior force derivative sensitivities and bandwidths. Our instrument has a sub-picometer gap stability and can simultaneously map not only vertical and lateral forces with atomic-scale resolution
PDF
Album
Full Research Paper
Published 11 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • electron microscopy, and high-resolution transmission electron microscopy. The fabricated ZnO NP samples are crystalline with a grain size of 30–100 nm. The ZnO NPs were used as catalysts for the photodegradation of methylene blue (MB) and methyl orange (MO) under visible and UV light. The results indicate
  • (XRD) using a Bruker D8 advanced X-ray diffractometer equipped with Cu Kα radiation (λ = 1.5418 Å). The morphology and size of the synthesized material were determined by field emission scanning electron microscopy (FESEM) on a Hitachi S-4800 at 15 kV and high-resolution transmission electron
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • , FEI-quanta 200, Japan Electronics, Japan), transmission electron microscopy (TEM, FEI-Tecnai F20, USA) and high-resolution transmission electron microscopy (HRTEM, JEOL 2100F, Japan). The element valence and chemical composition was investigated using X-ray photoelectron spectroscopy (XPS, Axis ultra
  • BOM-20 composites. In the high-resolution spectrum of Fe 2p (Figure 4b), peaks at 725.2 and 711.4 eV are ascribed to Fe 2p1/2 and 2p3/2, respectively, implying the existence of Fe–O bonds [37]. The difference of binding energy between these two peaks is 13.9 eV, suggesting the presence of Fe3+ in BOM
  • ) MIL101(Fe) and (b, c) BOM-20. (d) HRTEM image of BOM-20. (e) HAADF-STEM image of BOM-20 and the corresponding elemental maps of (f) Fe, (g) O, and (h) Bi. (a) XPS survey spectra of BOM-20 and high-resolution XPS spectra of (b) Fe 2p; (c) Bi 4f; and (d) C 1s. (a) UV–vis spectra, (b) PL spectra, (c
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • high-resolution spectrum lie at 367.9 and 373.9 eV, respectively, with a splitting of 6 eV (Figure 6a), indicating the elemental oxidation state of Ag metal [28][33]. The Co 2p high-resolution spectrum has two primary peaks assigned to 2p1/2 and 2p3/2 at 797.3 and 781.3 eV, respectively, as well as two
  • satellite peaks at 802.2 and 785.1 eV (Figure 6b). The peak difference between 2p1/2 and 2p3/2 and the satellite peak assignment represent the existence of cobalt atoms in Co2+ and Co3+ chemical states [34]. Likewise, the high-resolution spectrum of copper displayed Cu 2p1/2 and Cu 2p3/2 binding energies at
  • of ACC-2. High-resolution XP spectra (a) Ag 3d, (b) Co 2p, (c) Cu 2p, and (d) O 1s of ACC-2. Stability of ACC-2. (a) CV curves and (b) LSV curves before and after 10,000 continuous cycles in O2-saturated 0.1 M KOH electrolyte. Supporting Information Supporting Information File 70: Experimental
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • smaller spot sizes to reduce the thickness of the layer damaged by ion beams, and to increase the lateral resolution for precise machining and sample characterization. For most of these applications, the quality of the sample surface and its cleanliness are essential and, therefore, highly controlled
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • studied using a SEM (Hitachi S-4800, Hitachi High-Technologies Corp., Tokyo, Japan) at 3 kV accelerating voltage. Images of the spoon-shaped mandible tip were taken systematically and later assembled into one high resolution image. Higher magnified pictures were taken in characteristic areas of the
PDF
Album
Full Research Paper
Published 14 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • resolution [13][15][16][17][18][19]. These advances have enabled investigations mapping light-induced surface potential dynamics [20], ferroelectric domains [19], individual quantum dots [21][22], and even submolecular charge distributions [23][24][25][26][27]. These applications demonstrate that KPFM is
  • capable of atomic-scale spatial resolution and nanosecond time resolution under specific conditions. KPFM-based techniques can largely be classified as either “open loop” (OL) or “closed loop” (CL). CL techniques employ a feedback loop to apply a bias to compensate for the electrostatic force (or force
  • excitation applied at ω1 as it traces the topography measured in the first pass at a specific lift height above the surface. Lift height can be set such that the electrostatic forces are isolated from stronger short range forces at the expense of spatial resolution [10][58]. By setting the lift height to
PDF
Full Research Paper
Published 12 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • sample. The full width at half maximum (FWHM) energy resolution of the UPS experiment is 0.05 eV. Results and Discussion Figure 1a and Figure 1b report the structural characterization of the ZnTPP/Fe(001)–p(1 × 1)O sample in the reciprocal and in direct space, respectively. The low-energy electron
PDF
Album
Full Research Paper
Published 30 Aug 2022

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • the three beetles during flight. A camera speed of 2000 frames/s (shutter speed: 0.1 ms, resolution: 1280 × 800 pixels) was used to measure the flapping period of the beetle in flight and to determine its flapping frequency. Microscopic morphologies of hind wings of beetles A super depth-of-field
PDF
Album
Full Research Paper
Published 26 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • . antarctica plant, which are usually exposed to the environment, using cryo scanning electron microscopy (cryo-SEM) allowing for a high-resolution imaging of frozen and fractured samples in native condition, that is, without treatment in strong solvents, such as ethanol or acetone, usually needed in the
PDF
Album
Full Research Paper
Published 22 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • actual sensitivity and the spring constant of the used cantilever were calibrated on a cleaned silica wafer by the thermal noise method by Hutter et al. [27] using a correction factor of 0.251. The data was acquired using the quantitative imaging mode (QI™) with image sizes of 5 × 5 µm and a resolution
PDF
Album
Full Research Paper
Published 16 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • using a reference to the peak of the surface adventitious carbon (284.8 eV) in the high-resolution spectrum of the C 1s region. The N2 adsorption−desorption isotherms were recorded at −196 °C on a Micromeritics ASAP 2020 analyzer, while the specific surface area and pore distribution curve were
  • homogeneous suspension. The suspension was then dropped onto an Al foil to be observed via field-emission scanning electron microscopy (FE-SEM), and onto a carbon-supported copper grid for examination via transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM
  • , and W. The high-resolution XPS spectrum of the Bi 4f region (Figure 5a) shows two peaks at 164.1 and 158.8 eV, which are indexed to the binding energies of Bi 4f5/2 and Bi 4f7/2, respectively, proving the existence of Bi(III) in Bi2WO6 [44]. The high-resolution XPS spectrum of the W 4f region (Figure
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • spectra of the samples were recorded in the 1000–3500 cm−1 region with a resolution of 1 cm−1 using a Renishaw via a Reflex micro-Raman spectrometer with an argon ion (514.6 nm) laser. The X-ray photoemission spectroscopy (XPS) data were obtained from a PHI 5000 Versa probe II scanning XPS microprobe
  • an acceleration voltage of 15 kV. The morphological characteristics of the electrodeposited ERGO were obtained by field-emission scanning electron microscopy (FESEM, model: LEO 430i, Carl Zeiss) and high-resolution transmission electron microscopy (model: Tecnai G2 30ST, FEI) operating at 300 kV
  • transparency due to the exfoliation of stacking layers of GO. This suggests an increased surface area due to delamination of graphene layers (thickness of about one to a few layers) by electrochemical reduction. The high-resolution TEM of ERGO shows a d-spacing of 0.413 nm (Figure 3E), indicating a reduced
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • ), which controls the AC bias to nullify the modulated signal. We succeeded in directly measuring the local SPV by AC-KPFM with higher resolution, thanks to the exclusion of the thermal drift. We found that AC-KPFM can achieve a SPV response faster by about one to eight orders of magnitude than classical
  • modulated signal, referring to the AC bias null method presented by Kohl and co-workers [28]. AC-KPFM avoids the problem of thermal drift and achieves a higher resolution. We provide the theory for both the amplitude modulation (AM) mode [29] and the frequency modulation (FM) mode [30] and demonstrate
  • shown in Figure 3c. The AC-KPFM successfully resolved the inhomogeneous SPV distribution with fluctuations on scales of 10–50 nm and a few millivolts, whereas classical KPFM observed a homogeneous SPV distribution over the TiO2 surface with sub-micrometer resolution [12][51] because of the influence of
PDF
Album
Full Research Paper
Published 25 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • atmosphere, the ZnxCoy–C/CNT composite was obtained and further chemically etched with 1 M of H2SO4 solution before use. Material characterization Field-emission scanning electron microscopy (JEOL, JSM-7000F) and high-resolution TEM (HRTEM, JEOL, JEM-2100F) with EDS were used to examine the morphologies and
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • observation under the fluorescence microscope were all centrifuged and washed three times in bi-distilled water. However, due to the limited resolution of the stereomicroscope, the interaction of BBR NPs and bacterial cell walls could not be clearly observed. Therefore, the samples were processed by ultrathin
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • atomic pair distribution function based on electron diffraction. High-resolution transmission electron microscopy results revealed the existence of a core–shell structure, lattice distortion, interstitial atoms, and atomic vacancies in NaxTi1−xO2, which is critical for an excellent photocatalytic
  • , the Na doping in the Ti site will destroy the local atomic arrangement of the brookite phase and produce some microstructures. Figure 6a displays a typical high-resolution transmission electron microscopy (HRTEM) image of the sample calcinated at 400 °C, oriented at the [121]Brookite zone axis. The
  • wafer pasted on an aluminum sample holder by a carbon conducting resin. The EDX spectra were acquired from individual morphologies or grains in the samples. Electron diffraction and high-resolution imaging experiments were carried out on a high-resolution transmission electron microscope (JEOL JEM-2100
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • low. The algorithm is based on an iterative averaging of images within the tilt series in order to reduce both noise and highly directional effects at the expense of a small decrease in the resolution (2–3% for 1° steps of the tilt series during the first iteration). The images (slices) of the
  • specimen obtained at angles θ, θ − dθ and θ + dθ are averaged pixel-wise. The process can be repeated more than once if necessary, keeping in mind the decrease in the resolution. In Figure 1, an example of three successive images from a tomographic image series (of magnetite nanoparticles) before and after
  • effect of the morphological reconstruction and of the poor resolution of the test volume, which affects mainly the semi-axes magnitude of the fitting ellipsoid. The higher the resolution, the lower the shift, but the higher the hardware requirements. Overlapping entities can be also managed by the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022
Other Beilstein-Institut Open Science Activities