Search results

Search for "sensitivity" in Full Text gives 681 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • S24). When passing from the ratio c(Ag+)/c(3) = 0–1, an increase in r (0.45–0.91 nm) occurs, then a gradual decrease in r (0.91–0.70 nm) to the value c(Ag+)/c(3) = 10, after which r does not change. The differences in sizes obtained by DLS and DOSY can be explained by the low sensitivity of the NMR
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • the measurement of the SPV has been evidenced. These results stress the need to quantify properly the dependence of the S/N ratio of the pp-KPFM potential on the illumination state when investigating photovoltaic materials. For that purpose, future works will be devoted to increasing the sensitivity
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay
  • offers an unprecedented sensitivity in native physiological media. Coupling these nanomaterial-based systems with enzymatic reactions can further increase the sensitivity and selectivity of a given sensor, leading to a scenario in which a tiny structural alteration of a biomolecule can be detected within
  • sensitivity are currently implemented to obtain reliable information on tumor-associated genetic modifications and to follow tumor dynamics [4][16][46][56]. These techniques are mainly modifications of the well-known polymerase chain reaction (PCR), establishing thus the state-of-the-art in clinics in the
PDF
Album
Review
Published 31 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • times [2]. Shen et al. studied the dynamical behavior of dagger cantilevers using the power series and employed the finite element method (FEM) to validate the outcomes. The classical Euler–Bernoulli beam theory was used for deriving the equations of motion. They also studied the sensitivity of
  • cantilever frequencies to contact stiffness and investigated the variation of sensitivity with cantilever slope [3][4]. Shi and Zhao examined the contact models at the nanoscale and compared Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS) and Maugis–Dugdale (MD) models with the Hertz
  • the resonance frequencies and sensitivity of the AFM cantilever using the modified couple stress theory (MCST). An analytical formulation was derived for natural frequencies by writing the differential equations of cantilever motion. They found that when the dimensionless thickness of beam is less
PDF
Album
Full Research Paper
Published 13 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • condition, and therefore monitoring physiological pH values with high sensitivity is required. Our group designed a molecular beacon (LMB) DNA device appended with a FRET pair as pH sensing probe in cells [19]. The remarkable feature of the LMB probe was the structural transition from a closed (molecular
  • improve the detection sensitivity for mercury, which involved the thermodynamically and entropically favored displacement of BNA owing to the formation of metallo-DNA duplexes (dT–Hg–dT)n (Figure 5a). The displacement of BNA caused significant changes in the morphological, chiroptical, and electrical
PDF
Album
Review
Published 09 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • the sensitivity to other frequency components and the magnitude of demodulation artifacts for a range of demodulator bandwidths. Performance differences are demonstrated through higher harmonic atomic force microscopy imaging. Keywords: atomic force microscopy (AFM); multifrequency; demodulation
  • filter and direct-design method. For a fair comparison, each system is implemented on the same FPGA platform with a common sample rate. The sensitivity to unwanted frequency components for both low and high bandwidths is assessed along with implementation complexity. A final experimental comparison is
  • demodulator, while closed-loop methods include the Kalman filter, Lyapunov filter, and direct-design demodulator. Performance metrics In a previous work [28], the performance of single-frequency AFM demodulators was assessed by measuring the magnitude of demodulation artifacts and the sensitivity to
PDF
Album
Review
Published 07 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • measure of the mobility of the NPs. The calibration of the cantilevers was performed by the thermal tuning method. The oscillation amplitudes ranged from 0.05 to 0.6 V with a sensitivity of 25 to 31 nm/V. The sensitivity was measured individually for each cantilever by means of damping the AFM tip against
PDF
Album
Full Research Paper
Published 06 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • water (N/m3). A positive DRR indicated that the transverse microgrooves had a drag reduction effect in the concentric annulus flow setup. Results and Discussion Single-factor sensitivity analysis of groove geometric parameters As shown in Figure 2, the groove height h; the groove width w, and the
PDF
Album
Full Research Paper
Published 03 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • operate in the physiological range with suitable sensitivity. Another metal–organic framework (MOF) is studied in “The nanoscaled metal–organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy” [36]. Phosphinate-based MOF nanoparticles are decorated with porphyrin-type molecules as
PDF
Editorial
Published 20 Dec 2019

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • . Due to their different resonance mechanisms, each resonance peak can be independently tuned by adjusting the corresponding parameters of the structure. In addition, the sensitivity of the nanosensor is found to be up to 1900 nm/RIU. For practical application, a legitimate combination of various
  • light within sub-wavelength dimensions. Many plasmonic structures, such as high-sensitivity refractive index sensors [2], enhanced biochemical sensors [3], switches and filters [4], have been designed based on the concept of Fano resonance by utilizing a MDM waveguide [3][5][6]. Due to the interference
  • T-shaped, ring and split-ring, to obtain multiple Fano resonance modes with highly compact dimensions and independent tuning of peak positions. Additionally, the research on the refractive index properties of the nanosensor shows that the maximum value of the sensitivity is 1900 nm/RIU and the
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • about 600–1000 nm. The gas sensing test revealed that the introduction of rGO improved the performance of the sensing of acetone to low concentration, and the ZnFe2O4/rGO composite gas sensor containing 0.5 wt % of rGO exhibited a high sensitivity in sensing test using 0.8–100 ppm acetone at 200 °C. The
  • (10 ppb) [29]. ZnO1−x/rGO composites with 2 wt % rGO had enhanced gas sensing properties compared with pure ZnO, as indicated by an enhanced sensitivity and an improved response/recovery speed [30]. It has been proved that coupling or compounding metal oxides with graphene enhances the electronic
  • ZnFe2O4. Therefore, this sensor shows great promise for detecting acetone at low concentration (ppm). It is a suitable candidate for the nondestructive diagnosis of diabetes by means of concentration measurements of exhaled acetone vapor if the sensitivity and the response speed to acetone at ppb-level
PDF
Album
Full Research Paper
Published 16 Dec 2019

Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP)

  • Seyed Mohammad Mahdi Dadfar,
  • Sylwia Sekula-Neuner,
  • Vanessa Trouillet,
  • Hui-Yu Liu,
  • Ravi Kumar,
  • Annie K. Powell and
  • Michael Hirtz

Beilstein J. Nanotechnol. 2019, 10, 2505–2515, doi:10.3762/bjnano.10.241

Graphical Abstract
  • was spotted onto them via microchannel cantilever spotting (µCS). Based on the fluorescence measurements, the optimal microarray design was found and its sensitivity was determined. Keywords: alpha-fetoprotein (AFP); cancer biomarker; click chemistry; fluorescent immunosensor; hepatocellular
  • serum of patients suffering from HCC [23]. In this study, we compare different approaches of binding chemistry for the construction of sensitive fluorescent immunosensors for AFP detection by combining the unique characteristics of click chemistry with the high sensitivity of the biotin–streptavidin
  • incubated with solutions of streptavidin and biotinylated anti-AFP to obtain a biotin–streptavidin–biotin sandwich structure. The biotin–streptavidin–biotin sandwich strategy is used in the fabrication of immunosensors due to the improved sensitivity [30][31][32]. Lastly, fluorescent micropatterns were
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • pyramidal hierarchical SERS substrates with higher sensitivity can be achieved. Therefore, the combination of Ag nanoparticle clusters on the pile-up of copper surface leads to a new nanogap and improves the density of SERS hotspots. The electric field intensity of the hierarchical substrate on the pile-ups
  • national standard (5.48 × 10−9 mol/L), as shown in Figure 12. Conclusion We demonstrate a novel method based on indentation and chemical redox reaction to fabricate hierarchical SERS substrates for the detection of probe molecules with high sensitivity. Based on a study of different corrosion times in
PDF
Album
Full Research Paper
Published 13 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • the C−, CH2−, S−, and Au− peaks. The conductivity measurements (PFTUNA probes, spring const. 0.4 N/m) were performed by the PeakForce TUNATM method of a Bruker’s Dimension® IconTM SPM system. The scan rate was set to 0.5 Hz, the DC bias to 11.1 mV. Current sensitivity range was set to highest value
  • ) the corresponding 3D current image (DC bias: 11.1 mV, current sensitivity range: 0–100 pA) of islands obtained from HDT matrix inserted into the PAT SAM. (c) Enlarged topography view of different islands which are marked with a dotted frame shown. (d) Resistances measured for different PAT islands as
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • [50] provided an equivalent enhancement (factor of three) of SIL but with a smaller footprint and better scalability. The sensitivity of quantum magnetic sensing using spin carrying color centers undergoing ODMR as probes, such as VSi, is currently of the order of δB ≈ 10μT/√Hz and can be improved in
  • isotopically pure SiC to δB ≈ 10nT/√Hz [51][52]. By increasing the photoemission collection efficiency (C) of the color centers and the number of emitters (N), as for example in micropillars, the magnetic field sensitivity can be dramatically improved to reach magnetic sensing resolution of δB ≈ 10nT/√(C·N·Hz
  • design for increased resolution and sensitivity in magnetometry using these emitters [51][52][53][62]. An optimized design based on finite-element method analysis is also proposed for the enhancement of the VSi defect emission. The optimized design is a pillar with a radius of ca. 210 nm radius and a
PDF
Album
Full Research Paper
Published 05 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • sensitivity (up to 17 times), selectivity and improves the response dynamics of the sensors. Keywords: gold-decorated MWCNTs; multiwall carbon nanotubes (MWCNTs); self-assembled monolayers (SAMs); sensitivity; selectivity; vapour sensor; Introduction Aromatic volatile organic compounds (VOCs) such as
  • they are strong covalent (chemisorption) or weak (physisorption), highly impact the sensor performance, that is, the sensitivity, response and recovery time, and detection range. Unlike metal-oxide-based gas sensors, CNT-based sensors operate at room temperature (low activation energy) and can
  • , metal decoration or chemical functionalisation [13]. In the present work, we investigated the effect of gold nanoparticle decorated, multiwall carbon nanotubes functionalized with 1-hexadecanethiol on the sensor selectivity and sensitivity towards benzene and toluene vapours. Experimental Materials
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • and to increase the detection speed and sensitivity. The detection speed in amplitude-modulation mode is determined by the amplitude response time of the cantilever. The tapping-mode bandwidth is given by BW = πf0/Q, where f0 is the resonance frequency and Q is the Q-factor [32]. The resonance
PDF
Album
Full Research Paper
Published 29 Nov 2019

Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry

  • Elisabeth Hengge,
  • Eva-Maria Steyskal,
  • Rupert Bachler,
  • Alexander Dennig,
  • Bernd Nidetzky and
  • Roland Würschum

Beilstein J. Nanotechnol. 2019, 10, 2275–2279, doi:10.3762/bjnano.10.219

Graphical Abstract
  • . With a specific surface area of 10 m2/g (determined following [20]), an initial surface coverage of 0.48 monolayers can be estimated. This value agrees well with SAM surface coverages reported in the literature [21][22][23]. The sensitivity of resistance measurements towards ad-/desorption can be
PDF
Album
Letter
Published 18 Nov 2019

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • result deviates from a horizontal line, providing a high-sensitivity detection scheme for nonlinearity. However, z-scan measurements typically acquire nonlinear responses from thin samples in which multiple nanostructures are illuminated simultaneously, and collective behavior is monitored. The z-scan
  • deviate from the Gaussian profile, thus providing a high-sensitivity detection method for nonlinearity, similar to the z-scan technique. In order to fully characterize the nonlinearity of a single nanostructure, our x-scan setup is equipped with two optical detection paths in forward and backward
PDF
Album
Full Research Paper
Published 06 Nov 2019

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • electrical or electrochemical signal. The choice of the molecular architecture for the electrochemical immunosensors is crucial for obtaining high sensitivity and specificity. The matrix on which the bioactive layer is deposited may contain metallic nanoparticles to enhance the electrochemical response [8][9
  • Prussian blue (PB) interlayer and a gold shell. The enzymes horseradish peroxidase and glucose oxidase were immobilized to improve sensitivity, with linear ranges between 0.01 and 80.0 ng·mL−1 for CEA and from 0.014 to 142 ng·mL−1 for AFP, and detection limits of 4 pg·mL−1 and 7 pg·mL−1, respectively [25
  • with a multidimensional projection technique applied to immunosensing data [34]. In this paper, we describe an INμ-SPCE to detect PSA using amperometry. To the best of our knowledge, the limit of detection is the lowest in the literature. The high sensitivity is probably connected to the molecular
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • detected MR (ODMR) with NV centers was also demonstrated [8]. Conventional MRI makes uses of contrast agents to enhance sensitivity and resolution. In principle, the combination of magnetic and radio-frequency excitation in MRI techniques allows for resolution enhancement both spatially and temporally
  • allowed for in vivo imaging on the single-biomolecular scale at room temperature [12]. Other approaches not based on NV centers are evolving at the same pace as methods based on NV centers. For example, a new method for high-resolution nano-MRI coupling high spin sensitivity of nanowire-based MR detection
  • readout light, showcasing nanotesla sensitivity and nanometer resolution at room temperature. The general principles of NV center optical magnetometry are given in [23]. An NV center based single electron magnetometer in a commercial diamond is built under an ODMR microscope in [24]. The optically
PDF
Album
Review
Published 04 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • integrated connection, and high sensitivity [42][43]. In addition to these nanotechnological advancements in device fabrication, sensing materials for molecular recognition have been continuously explored on the basis of supramolecular chemistry with the aid of synthetic organic chemistry and materials
  • sensors Advancements in sensor capabilities, including sensitivity, selectivity and usability, can be accomplished by ultrafine design of device mechanisms and sensing material structures. Both the device and sensing material design can be accomplished with a combined concept, nanoarchitectonics, derived
  • . Sensors for chemical substances Mainly due to the high demand to solve environmental problems, vapor sensors and gas-phase chemical sensors have been actively researched. Tang and co-workers accomplished drastic improvement of sensitivity of H2S gas detection by mechanical deformation of ultrathin single
PDF
Album
Review
Published 16 Oct 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • eye sensitivity [35][60]) together with the total visible light output (luminous flux) are presented as a function of the N-CDot amount. At the lowest N-CDot amount (15 µL), there is no valid registered CRI (filled circles) or CCT (empty circles) output. As the amount increases, the CRI increases
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • sensitivity of contrast media represents a major challenge in the targeted CT imaging approach [23]. The minimum detectable signal was defined by Krause [25] to be 30 HU [26], with an attenuation rate of gold being 5.1 HU and with a concentration difference of 5.9 mM between the target and the background
  • nanoparticle tracking analysis (NTA) using a NanoSight LM10 with a laser module LM14 set at a wavelength of 532 nm, NTA 2.3 build 0033 analytical software (Malvern Instruments Ltd, Malvern) and a high-sensitivity sCMOS camera. Particles were suspended in PBS buffer pH 7.4. The samples were injected in the
PDF
Album
Full Research Paper
Published 07 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • transition under axial strain [5][32]. The sensitivity to and the resilience against strain make BP an ideal material for strain-sensing electronics and flexible electronic devices. Xiao et al. fabricated few-layer BP nanosheets by chemical vapor transport [25], and observed a phase transition from an
  • BP devices cannot. The sensitivity is proportional to the length of the pressure region in the device. Band alignment was analyzed to help understand the physics of this behavior. In view of the constraints of first principles calculation regarding the device size, we fitted a set of parameters using
PDF
Album
Full Research Paper
Published 24 Sep 2019
Other Beilstein-Institut Open Science Activities