Search results

Search for "thermal" in Full Text gives 1215 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

  • Chuchu Li,
  • Stanislav N. Gorb and
  • Hamed Rajabi

Beilstein J. Nanotechnol. 2022, 13, 404–410, doi:10.3762/bjnano.13.33

Graphical Abstract
  • , strain rate, harmonic displacement, and harmonic frequency were set as 2.0 μm, 0.05 s−1, 1.0 nm, and 75 Hz, respectively. The Poisson’s ratio of the tibia specimens was assumed to be 0.3 [14]. The allowable drift rate was set as 0.10 nm/s to minimize the effect of vibration and thermal drift during
PDF
Album
Full Research Paper
Published 22 Apr 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • development of new materials and microelectromechanical and nanoelectromechanical systems (MEMS/NEMS), MEMS devices have become an essential part of flexible electronic systems. Common flexible MEMS devices are based on electrostatic, piezoelectric, and thermal actuation. Electrostatic actuation is one of the
PDF
Album
Review
Published 12 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • carbon, silicon, boron, and halloysite clay sheets and possess unique physicochemical properties. Among nanotube structures, much attention has been paid to carbon nanotubes (CNTs) because of their excellent mechanical and tensile strength properties, thermal and electrical conductivity, and high surface
PDF
Album
Review
Published 11 Apr 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • resistance RN set the same for all JJs in series. Thermal fluctuations IF are treated as white Gaussian noise with zero mean and the correlation function Q is the charge on the load capacitor calculated from the equation for the oscillatory circuit: The described model is not complete. To simulate a log
PDF
Album
Full Research Paper
Published 28 Mar 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • chemical and thermal stability. Zeolite membranes, in contrast, are attractive for separation processes in harsh chemical environments and at high temperatures, owing to their high chemical and thermal stability. Additionally, these inorganic membranes possess relatively uniform pore structures and give
  • rotation of the organic linkers [19][31], besides their remarkable thermal and chemical stability [32]. The linker rotation effect can mediate guest molecule diffusion efficiently since larger molecules encounter a larger hindrance by the rotating linkers. ZIF-8 exhibits this representative linker rotation
  • substrate, the pore size of which is larger than 100 nm (Figure 6a,b) [42]. These embedded ZIF-8 membranes indicated a greater mechanical strength and thermal stability owing to the intrinsic properties of the porous ceramic support [43]. Counter-diffusion synthesis was also adopted in this study to be
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • reported in the literature as a mechanism responsible for the resistive switching behavior occurring in conventional multilayer stack constructions. Conducting paths are usually formed over extended defects in the thin film structure as a result of a thermal mechanism. An important property of this effect
PDF
Album
Full Research Paper
Published 24 Feb 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • solution with high thermal stability. Transmission electron microscopy (TEM) revealed a typical face-centered cubic structure with uniform size and an average diameter of 5.2 ± 1.5 nm (Figure 1a) [17]. After the surfactant dodecyltrimethylammonium bromide (DTAB) was introduced, its lipophilic ends combined
  • Fe3O4 nanoparticles were synthesized via the thermal decomposition of precursor method as previously reported [22]. Specifically, under nitrogen atmosphere, a solution containing 0.01 mol 1,2-hexadecanediol and 20 mL dibenzyl ether was magnetically stirred within a three-necked flask (100 mL). Then
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • solution and corrosion products on the surfaces reduced the friction coefficient [16][17]. The native oxide layers grown in the air were found to strengthen the friction coefficient and the wear resistance of MGs at the nanoscale [18][19]. The thermal oxidation caused a higher contribution of shearing and
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • the main connective tissue cells that secrete the collagen-rich extracellular matrix (ECM) for generating soft tissues that bind with the implants. Wang and co-workers reported that the super hydrophilic nanotubular structure of hydrogenated TiO2 prepared by anodic oxidation and thermal hydrogenation
PDF
Album
Review
Published 14 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • vibrational frequencies were calculated at the same level of theory. They were confirmed to be positive and were used to derive zero-point vibrational energy and thermal energy corrections. Potential alternate spin states were investigated in order to make sure that the lowest energy state was indeed
  • extractions efficiency, transmission through the QMS or the energy dependence of the electron current are not considered. The most favorable DEA process is the formation of [Mo(CO)5]−, that is, removal of one carbonyl group, at close to thermal electron energy. The intensity of the DEA ion yield curves
  • [Mo(CO)n]− (n = 1–5), calculated at the PBE0/ma-def2-TZVP level of theory and corrected for the thermal energy at room temperature (25 °C). From these values it is clear that the formation of [Mo(CO)5]− is exothermic. Though the calculated thresholds for the loss of two and three CO groups are
PDF
Album
Full Research Paper
Published 04 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 10.3762/bjnano.13.12 Abstract Thermal oxidation of Si(113) in a monolayer regime was investigated using high-temperature scanning tunneling microscopy (STM). Dynamic processes during thermal oxidation were examined in three
  • understand thermal oxidation on silicon surfaces as well as metal-induced oxidation and silicidation [2]. Nevertheless, dynamic processes in oxidation have been studied scarcely so far, especially for high-index silicon surfaces. The study of the oxides grown on high-index silicon surfaces is of great
  • the Si 2p and O 1s core levels in detail during thermal oxidation using high-resolution X-ray photoelectron spectroscopy with synchrotron radiation [7][8][9]. Using a state-of-the-art wet oxidation procedure, we also reduced the interface trap density (Dit) at the SiO2/Si interface on the Si(113
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • bioactive products. Patel et al. fabricated bioactive electrospun nanocomposite scaffolds of poly(lactic acid) for bone tissue engineering by incorporating cellulose nanocrystals and observed that the nanohybrid has excellent properties in terms of mechanical strength and thermal stability compared to the
  • predominant PEMs [13]. Zhang et al. developed nanohybrid PVDF membranes by incorporating zeolite with enhanced thermal and electrochemical performance for lithium-ion batteries [14]. ENHs have also been used as a heterogeneous catalyst in indole synthesis by Savva et al. by incorporating gold nanoparticles
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • catalytic area, SnO2 is an emerging material for removing contaminants such as organic dyes, phenolic compounds, and volatile organic compounds (VOCs) due to strongly oxidizing properties thanks to flexible energy band structure, rich defects, good chemical, and high thermal stability, and easily controlled
  • suitable site for the formation of NO− intermediates to generate nitrite and nitrate products in the photocatalytic reaction processes. Moreover, additional OVs could be readily formed by thermal treatment under argon atmosphere. The work suggested an innovative approach for developing high-performance
PDF
Album
Review
Published 21 Jan 2022

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • attributed to thermally activated domain-wall motion. In another study, it has been demonstrated that ultrafast laser pulses can indeed move magnetic domain walls, which however could not simply be explained by thermal activation due to the transient heating by the laser pulse alone, but had to be attributed
  • to a two-step process based on laser-pulse-induced depinning of domain walls and successive thermal domain-wall motion after the laser pulse [20]. In a GdFe-containing sample, in addition, even unidirectional domain-wall motion in the temperature gradient created in the Gaussian footprint of
  • and successive thermal domain-wall motion in the locally heated region of the sample [20][21]. The places at which domain-wall motion is observed could exhibit a locally shallower domain wall pinning potential than other places along the domain wall and probably reflect the microstructure of the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • order of a few electronvolts [39][40][41]. This is a higher value than atoms produced during evaporation-based processes, whose energy is in the range of the thermal energy of the body that is heated and evaporated, that is, a fraction of an electronvolt. Sputtered atoms may collide with plasma atoms
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • hysteresis loops and SAR of assemblies of elongated magnetite nanoparticles is carried out by solving the stochastic Landau–Lifshitz equation, according to the same scheme that was used in our previous works [23][25]. Using this approach one can take into account both the thermal fluctuations of particle
  • magnetic moments at a finite temperature T and the influence of MD interaction in dense clusters of magnetic nanoparticles. The thermal fields , i = 1, 2,…, Np, acting on various nanoparticles of the cluster are statistically independent. Their components have the following statistical properties [43
  • field, is very small. At the same time, at small values of this parameter, σ ≪ 1, the dynamics of the unit magnetization vector is determined by thermal fluctuations, and the effect of the ac magnetic field is insignificant. Therefore, at fixed amplitude of the ac magnetic field, with increase in the
PDF
Album
Full Research Paper
Published 28 Dec 2021

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor Bi2Sr2CaCu2O8+δ. Two types of devices are considered containing either a conventional large single crystal or a whisker. We perform numerical simulations
  • thermal smearing of quantum levels, which becomes significant at frequencies f kBT/h, where kB and h are the Boltzmann and the Planck constant, respectively, and T is the operation temperature. For room temperature, T = 300 K, this happens at f ≃ 6.25 THz. QCLs have to be cooled down in order to operate
  • , to handle self-heating, and impedance matching microwave antennas, to improve RPE. In this work we analyze design aspects of THz sources based on Bi-2212 mesa structures. Thermal and radiative properties are studied for two types of devices containing either a conventional large single crystal or a
PDF
Album
Full Research Paper
Published 21 Dec 2021

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • structure of the prepared nanowires, unlike simple structures, enables further more extensive engineering of nanowire properties by specific technological steps (e.g., thermal annealing, etching, doping, and filling) in order to obtain, for example, catalytic nanowires with huge specific surface or hollow
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • thermal method [33] was then used to calculate the static cantilever bending stiffness. To study the process of tip detachment, we swept drive frequencies (low to high, then high to low) at selected drive amplitudes near the first contact resonance frequency of the cantilever–sample system. The cantilever
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • by the resistively–capacitively shunted-junction (RCSJ) model [25][26], especially for measurements obtained at high temperatures. However, taking into account the effect of the YBCO junction resistance thermal noise [16] makes it possible to neutralize this difference and obtain a good agreement
  • ). The thermal fluctuations IF are assumed to be a white Gaussian noise with zero mean and correlation function A simple harmonic signal of the amplitude Imw and the frequency ωmw = 2πFmw describes an external high-frequency radiation of the power . Its effect on the Josephson system particularly
  • detection regime is optimal for the junction. This issue is discussed in more details below. The third important parameter is the thermal noise magnitude, kBT, which affects the smearing of the Shapiro steps, and, accordingly, the decrease in the step size in the region of low radiation power. It is not
PDF
Album
Full Research Paper
Published 23 Nov 2021

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • thermal annealing of the gold thin film. Thermal dewetting of gold film results in spherical gold nanostructures with average dimensions of 50 nm. Both, luminescent TiO2:Eu and TeO2:Eu films were deposited by RF magnetron sputtering from mosaic targets. The morphology of the gold nanostructures was
  • ethanol and dried at 50 °C. Plasmonic nanostructures were prepared by thermal dewetting of gold thin films. Thin Au films with a thickness of 2.8 nm were deposited using a tabletop DC magnetron sputtering coater (EM SCD 500, Leica) in pure Ar plasma (argon, Air Products, 99.999%) at a pressure of 0.2 Pa
PDF
Album
Full Research Paper
Published 22 Nov 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • piezoelectric and ferroelectric properties, high chemical resistance, high thermal stability, large polarization, short switching time, and mechanical flexibility. All these combined characteristics make it suitable for a wide range of advanced applications, from sensing to energy harvesting [8][9][10][11]. It
PDF
Album
Full Research Paper
Published 19 Nov 2021

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • to introduce ILs into polymer gel electrolytes. Currently, ILs have received much attention due to their unique properties, such as a wide electrochemical window, high ionic conductivity, non-volatility, non-flammability, small vapor pressure, broad liquid range, and outstanding thermal stability in
  • polymer gel electrolytes (log σ as a function of 1000/T). From the plot, it can be seen that the thermal dependence of the conductivity follows the Vogel–Tammann–Fulcher (VTF) equation, which is commonly used to explain the ion transport in amorphous polymer electrolytes [36][37]: where A is a constant
PDF
Album
Full Research Paper
Published 18 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • electron transport through the dot (antiadiabatic limit) allows one to consider the phonon subsystem as being approximately in thermal equilibrium. The phonon operator X can be then replaced with its expectation value [67] ⟨X⟩ = exp[−(λ2/ω0)(Nph + 1/2)] with λ = {λI,λO}, depending on the analyzed case and
PDF
Album
Full Research Paper
Published 12 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • gradient or a thermal gradient. The diffusivity and dynamic viscosity affect the way in which mass is transported on the substrate. These gradients cause a circulatory flow of fluid, influence the mass transport, and eventually result in differently patterned fractal structures. The effects are
  • , respectively, termed as Gibbs–Marangoni concerning surface tension gradients and Bénard–Marangoni concerning thermal gradients [58][59][60][61][62]. The pattern and shape of the fractals depend on flux, thermal energy, surface energy, and diffusion coefficient of the clusters. The schematic shown in Figure 4
  • , further growth into specific fractal shapes depends mainly on availability of sol flux near the growing cluster and the Marangoni effect that includes both thermal energy and diffusion aspects. With limited flux but lower diffusion, rhombohedral fractals are formed that are sparsely spaced on the
PDF
Album
Supp Info
Review
Published 09 Nov 2021
Other Beilstein-Institut Open Science Activities