Search results

Search for "Raman" in Full Text gives 458 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • quantitative estimation of the unbound drug. Physical characterization techniques The functional group and structural analysis of GO and GO–Chl nanoconjugate were studied using a Fourier-transform infrared spectrometer (Cary 630 FTIR, Agilent, CA, USA) in ATR mode and a Raman spectrophotometer (Ranishaw win
  • , Raman spectroscopy was utilized to evaluate the formation of GO (after the oxidation of graphite powder) and the GO–Chl nanoconjugate. The structural properties of graphite and GO nanosheets were investigated through the comprehensive analysis of the characteristic graphitic domain band (G band) and
  • defect band (D band) in the Raman spectra (recorded at an excitation wavelength of 514 nm) of the compounds. Supporting Information File 1, Figure S1c reveals the appearance of the G band (1581 cm−1) and D band (1352 cm−1) for graphite, corresponding to the E2g symmetric vibrations associated with the
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • characterization of all formulations regarding interactions of the components and their stability during the preparation procedures, different techniques were used including infrared (IR), ultraviolet–visible (UV–vis), and Raman spectroscopy as well as TGA. For analyzing potential structural changes in the CNs
  • blank CNs indicate that the structure of TMZ was preserved during irradiation. Upon its incorporation in the CNs, in vitro dissolution studies, in which UV–vis spectra of TMZ after its release from the irradiated CNs were recorded, were carried out. Raman spectroscopy The Raman spectra of single- and
  • of the CNTs; the bands from the Raman modes that result from the vibration of all carbon atoms in the CNTs; and the 2D band occurring between 2600 and 2800 cm−1, which is sensitive to the number of graphene layers and their arrangement. The intensity ratio between the D and the G band was analyzed
PDF
Album
Full Research Paper
Published 19 Feb 2025

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • impossible. The complicated preparation procedures and analysis give us often an information limited to just one factor, for example, to specific chemical composition or topology (AFM, FTIR, or Raman microscopy) [45]. Ideally, the comparison of data from diverse visualisation techniques can provide us with
PDF
Album
Review
Published 13 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • , and Raman spectroscopy, as well as EDX and XRD revealed controlled aggregation, successful capping, and crystalline growth of the ʟ-car-AgNPs. The ʟ-car-AgNPs exhibited promising sensing capabilities with limits of detection of 141.79 ppb (1.2 μM) for Cd2+, 131.33 ppb (0.63 μM) for Pb2+, 215.35 ppb
  • Raman spectra of ʟ-carnosine-capped silver nanoparticles, as well as ʟ-carnosine, as solid and in aqueous solution, were recorded at RT using an excitation source of 532 nm. The light source was a diode-pumped solid-state Nd3+:YAG laser (Cobolt Samba 0532-01-0500-500, Cobolt AB, Sweden). For solid ʟ
  • -carnosine and ʟ-car-AgNPs, powdered samples were placed on glass slides, and the Raman signal was collected in a backscattering geometry using a 50× long working distance objective. The incident laser of approximately 10 mW power had a spot size of approximately 50 μm on the sample surface. Aqueous ʟ
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • ), and density functional theory (DFT) study suggests that the hydrogenation of graphene with atomic hydrogen leads to the formation of graphone [8]. The full hydrogenation of graphene (graphane) was experimentally obtained by Elias et al., and their TEM and Raman spectroscopy results evidence the
  • using different experimental techniques is available. Ni et al. synthesized graphene on a polyethylene terephthalate (PET) substrate and studied the effect of uniaxial strain through Raman spectroscopy [30]. They stretched PET in one direction and found a redshift in the D and G bands for a single
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • annealing Zn powder under atmospheric pressure conditions, we collected nanocrystals with various morphologies, including rods, pencils, sheets, combs, tetrapods, and multilegs. Raman scattering study reveals that the samples are monophasic with a hexagonal structure, and fall into the P63mc space group
  • results prove that ZnO exhibits many novel nanostructures that can foster the development of next-generation optoelectronic nanodevices and new applications in biological and biomedical fields. Keywords: chemical vapour deposition; electron microscopy; Raman and photoluminescent spectra; ZnO
  • nanostructures [23][35][36]. Our current work uses this simple method to grow ZnO nanostructures. After fabrication, the crystal quality of nanostructures is assessed through Raman scattering (RS) and photoluminescent (PL) measurements at room temperature. Experimental As mentioned above, CVD was utilized to
PDF
Album
Full Research Paper
Published 11 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • synthesis, which is commonly used in the literature. TEM and zeta potential measurements were used to determine morphology and sizes of the CDs, and XRD, XPS, and FTIR and micro-Raman spectroscopy were used for structural characterization. Optical characterization of the CDs was done by absorption and
  • Cary Eclipse fluorescence spectrophotometer were used for transmission electron microscopy (TEM), zeta potential measurements, X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, PVD thermal evaporation, scanning
  • . The FTIR and XPS results are in agreement. Raman spectroscopy was also carried out to confirm the presence of aromatic carbon atoms in the newly synthesized CDs. The D band was observed at 1150 cm−1, and the G band was observed at 1519 cm−1 (Figure 2f). The D band is associated with defects in the
PDF
Album
Full Research Paper
Published 07 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • . To enrich the basic characterizations of WSe2, we conducted Raman spectroscopy and scanning electron microscopy (SEM) measurements (Supporting Information File 1, Note 5). The broken symmetry leads to an asymmetric distribution of photogenerated carriers, resulting in a non-zero photocurrent even
  • probe power. (d) Photoresponse intensity of heterojunction (red dots) and graphene region (black dots) as a function of probe power. Supporting Information Supporting Information File 20: Characterization of structure, SHG image, SEM and EDS images, Raman and PL spectrum of WSe2 and raw TRPC curves for
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • spectroscopy, atomic emission spectroscopy, surface-enhanced Raman scattering, electrochemical, fluorescence, and colorimetric methods [18][19]. Catalytic hydrogenation is the preferred method for the conversion of 4-nitrophenol to 4-aminophenol, which is less toxic [20]. However, the conversion process is
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • complete characterization of the GO sample is available in [36]. Atomic force microscopy (AFM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to assess size, morphology, number of layers, and surface chemistry of GO. The GO sample used in this study consists of single layers with
  • less than 1.5 nm thickness and a flake size distribution from 18 to 308 nm. The calculated ratio between the intensity of the D (ID) and G (IG) bands of Raman is ID/IG = 0.85, indicating that the material has a high number of defects, an indirect indication of oxidation. The surface chemical
  • [45][46]. In the absence of TA, the modulation of the C=0 stretching vibration intensity may indicate coordination of the divalent metal ions Ca2+ and Mg2+ present in EPA medium [47]. The intensity ratio between ID and IG bands in Raman spectroscopy analysis ranges from 0.94 ± 0.01, for the GO sample
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • a water contact angle of 50.24°. Because of the nanowire array morphology, the p-Si NWs were more hydrophilic nature with a water contact angle of 3.36°, which manifests superior photocatalytic oxidative coupling. Raman spectra were conducted to confirm the surface composition of the synthesized
  • photocatalysts. As depicted in Figure 4a, the Raman spectrum of Si exhibits a single peak located at 519 cm−1, corresponding to the first-order transverse optical (TO) mode of Si [46]. For the TiO2/Si photocatalyst, two distinct peaks were observed, namely, (i) the characteristic Eg vibration of TiO2, located at
  • 146 cm−1, and (ii) the TO phonon mode of Si (Figure 4b) [47][48][49]. Consequently, the combined surface-sensitive Raman and bulk-sensitive XRD results reveal that the n-type TiO2 coating layer on p-type SiNWs does not influence the crystalline structure. Photocatalytic OCM The photocatalytic OCM
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • Raman or FTIR spectroscopy [5][8][37], to study the nature of the desorbed and incorporated molecular fragments ideally during the irradiation process. Up to now, only silver pentafluoropriopionate allowed for three-dimensional growth [30]. However, the use of this compound required relatively high
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • -dispersive X-ray spectroscopy. Furthermore, NPs of various sizes ranging from 6 to 35 nm were loaded onto a filter paper by a simple and effective drop-casting approach to achieve flexible surface-enhanced Raman spectroscopy (SERS) substrates/sensors. These substrates were tested using a simple, portable
  • Raman device to identify various hazardous chemicals (malachite green, methyl salicylate, and thiram). The stability of the substrates was also systematically investigated by determining the decay percentages in the SERS signals over 60 days. The optimized SERS substrate was subsequently employed to
  • simulants was observed at a 325 nm Raman excitation. Our findings reveal that a higher ablation yield was observed at IR irradiation than those obtained at the other wavelengths. A size decrease of the NPs was noticed by changing the liquid environment to an electrolyte. These findings have significant
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Bolometric IR photoresponse based on a 3D micro-nano integrated CNT architecture

  • Yasameen Al-Mafrachi,
  • Sandeep Yadav,
  • Sascha Preu,
  • Jörg J. Schneider and
  • Oktay Yilmazoglu

Beilstein J. Nanotechnol. 2024, 15, 1030–1040, doi:10.3762/bjnano.15.84

Graphical Abstract
  • stability, retaining reliability at temperatures reaching up to 200 °C. This exceptional thermal resilience makes it ideally suited for demanding high-temperature applications, showing its potential across various industries. Transmission electron microscopy (TEM) and Raman characterizations of the VACNTs
  • Raman spectrum was recorded in the range of 50 to 3500 cm−1 using an excitation wavelength of 488 nm (see Figure 3b). It shows the main modes (G, D, and 2D) typical of all carbon nanotubes and a less intense radial breathing mode (RBM). The G-band peak corresponds to the crystalline graphitic nature of
  • . (a) Scanning electron microscopy image and (b) 3D close-up of the pixel-based CNT microbolometer. (a) TEM image showing DWCNTs and (b) Raman spectrum of the VACNTs. Schematic of the device under test (DUT) and measurement setups to characterize the CNT-based microbolometer. (a) Sample 1 with metal
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • [27][28], surface-enhanced Raman spectroscopy [29][30], microfluidic-coupled biochip [31], electrochemical [32], and field-effect transistor (FET)-based biosensors [33]. Biosensors offer several distinct benefits for virus recognition, including higher selectivity through improved target receptors and
PDF
Album
Review
Published 06 Aug 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • yield, their physical properties, and their evolving microstructures. Results and Discussion Structural analysis Raman spectroscopy analysis of the exfoliated samples revealed prominent vibrational modes of hexagonal 2H-MoS2, 2H-WS2, and mixture of both phases, represented by E12g at 382 cm−1 and A1g at
  • further advancements in materials science and engineering. Conclusion Neat and intermixed MoS2 and WS2 phases were evaluated for the PD of MB dye under solar irradiation excitation. The considered samples were systematically characterized by XPS, Raman spectroscopy, SEM, and HRTEM. WS2 exhibited the
  • Cu radiation source at a 1.54 Å wavelength and a micro-Raman spectrometer (Renishaw) equipped with a green laser excitation of 532 nm. The microstructure of the specimen was analyzed using a scanning electron microscope (Thermo Fisher Scientific, Waltham, MA, USA), and a transmission electron
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • addition, it can be integrated with classical optical spectroscopy methods such as Raman and fluorescence [20][28][29], enabling a multidimensional characterization approach. A well-recognized issue within the AFM community is the inaccurate height determination derived from topography images on
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • 24 h, CQDs were successfully synthesized. A comprehensive characterization of the CQDs was performed using UV–visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, Raman spectroscopy, and luminescence spectroscopy, confirming their high quality. The photocatalytic
  • catalytic activity in MB degradation, while those prepared with water as a solvent did not show significant catalytic activity. The samples were also characterized using UV–visible spectra, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, dynamic light scattering (DLS), and
  • saturation. Multiple measurements (at least three) were performed for each sample to ensure reliable and accurate measurements. A quartz cell with a 1 cm path length was used for the DLS measurements using a Malvern Zeta-sizer equipment model 7.2. Raman spectroscopy for all samples was performed in a Horiba
PDF
Album
Full Research Paper
Published 25 Jun 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • –Lorentzian functional GL(30) was applied during the simulations. Raman scattering measurements were performed under ambient conditions and room temperature using a T64000 Horiba Jobin-Yvon spectrometer configured in a backscattering geometry with a 1800 gr/mm grating and a microscope objective of 100
  • procedure. It demonstrates homogeneity without a notable dominance of hills or valleys. The structural properties of the CuO films were evaluated using XRD and Raman spectroscopy. The XRD diffractograms (Figure 4A) exhibit well-defined reflections that correspond to the polycrystalline monoclinic structure
  • , cupric CuO, cuprous Cu2O and the intermediate phase paramelaconite Cu4O3. The aforementioned phases of copper oxide have different physical and electrical properties, different colors, and crystal structures [55]. By examining the Raman spectra of copper oxide compounds, phase as well as chemical
PDF
Album
Full Research Paper
Published 24 Jun 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray mapping. The TiO2/GQDs-GCE exhibits better electrochemical activity for uric acid and hypoxanthine than GQDs/GCE or TiO2/GCE in differential pulse voltammetry (DPV) measurements. Under optimized
  • GQDs were observed by using a JEM 2100 high-resolution transmission electron microscopy (HRTEM), Joel, Japan. Raman spectroscopy measurements were performed on a WiTec, Alpha 300R with a 532 nm laser. Surface analyses of the obtained materials were carried out using a S-4800 scanning electron
  • /GQDs. This is possibly because of the low content of GQDs in the composites, which clearly indicates that GQDs do not affect significantly TiO2 crystal structure. Figure 2c presents the Raman spectra of the obtained materials. Four characteristic Raman-active Eg, B1g, A1g, and Eg modes of anatase TiO2
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • -known noble metal materials whose resonance occurs in both visible and infrared range of the electromagnetic spectrum, rendering pertinence in various disciplines such as surface-enhanced Raman scattering (SERS), optical sensors, fluorescence (SPR) sensor chips, deoxyribonucleic acid (DNA) sensors
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Exfoliation of titanium nitride using a non-thermal plasma process

  • Priscila Jussiane Zambiazi,
  • Dolores Ribeiro Ricci Lazar,
  • Larissa Otubo,
  • Rodrigo Fernando Brambilla de Souza,
  • Almir Oliveira Neto and
  • Cecilia Chaves Guedes-Silva

Beilstein J. Nanotechnol. 2024, 15, 631–637, doi:10.3762/bjnano.15.53

Graphical Abstract
  • temperature to generate ionized particles. These ionized species interact with the ceramic crystal of TiN, resulting in a pronounced structural expansion. The exfoliated TiN products were comprehensively characterized using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy
  • . Remarkably, the cubic crystal structure of TiN was effectively retained, while the (200) crystal plane d-spacing increased from 2.08 to 3.09 Å, accompanied by a reduction in crystallite size and alterations in Raman vibrational modes. Collectively, these findings provide compelling evidence for the
  • microscope operating at 200 kV. X-ray diffraction (XRD) analysis was conducted using a diffractometer (Miniflex II) with Cu Kα radiation over a 2θ range of 20–90°, with a scan speed of 2° per minute. Furthermore, Raman spectra were obtained using a spectrometer (Horiba Scientific MacroRam Raman) equipped
PDF
Album
Letter
Published 31 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • measured at low temperature in the near-bandgap region, as shown in Figure 6. Apart from that, a narrow emission peak is observed at 3.726 eV. This peak is assigned to multiphonon resonant Raman scattering (RRS) in ZnS since the quantum energy difference between the excitation laser line (3.814 eV) and the
  • peak position (3.726 eV) is nearly equal to the 2LO phonon energy in ZnS. The non-resonant Raman scattering measured with the excitation by the 785 nm laser line, shown in the inset of Figure 6b, clearly indicates the presence of a Raman scattering peak at 350 cm−1 (43 meV), which corresponds to the LO
  • phonon energy in both the zinc blende and the wurtzite ZnS phases. Apart from that, Raman scattering peaks are observed at 275–280 and 220 cm−1, which are assigned to the TO and 2LA Raman scattering, respectively [33][34]. Therefore, the quantum energy of the PL excitation laser line of 325 nm (3.814 eV
PDF
Album
Full Research Paper
Published 02 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • infrared (FTIR) spectra were recorded on a IR-Prestige-21 (Shimadzu). Raman spectra were recorded on an Xplora Plus instrument (Horiba, Japan) in a frequency range from 200 to 2000 cm−1 and with an excitation wavelength of 785 nm. The nitrogen adsorption/desorption isotherms were recorded by using a
  • aromatic carbons, O–H bending in carboxylic and carbonyl groups, C=O vibrations in epoxy groups, and stretching vibrations of C–O in alkoxy groups, respectively [20][21]. These functional groups prove the existence of GQDs in CF/GQDs. The Raman spectra of CF and CF/GQDs are presented in Figure 3b,c. CF
  • exhibits four peaks at 469, 550, 614, and 690 cm−1, corresponding to the T1g(2), T1g(1), A1g(2), and A1g(1) Raman modes, respectively [22]. For CF/GQDs, these modes are broad and weak, but these results also confirm the existence of CF in GQDs. In contrast to the spectra of pure CF, there are obvious
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • for various novel applications where arrays of metal nanostructures are used, such as surface-enhanced Raman spectroscopy substrates [36][37][38]. In this work, we deposited Ag NWs on specially patterned silicon (Si) substrates, so large fractions of NWs are partially suspended over the holes. Samples
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024
Other Beilstein-Institut Open Science Activities