Search results

Search for "alginate" in Full Text gives 39 result(s) in Beilstein Journal of Nanotechnology.

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • mucoadhesive drug delivery system that was developed to fulfill these requirements. Alginate nanoparticles were synthesized by water-in-oil emulsification followed by external gelation and then coated with the mucoadhesive polymer Eudragit RS100. The formulated nanoparticles had a mean size of 219 nm and
  • developed in this study is intended to be loaded with active therapeutic agents and has the potential to be used as an alternative drug delivery strategy for the treatment of gastric related diseases. Keywords: alginate; Eudragit RS100; mucoadhesive nanoparticles; mucus; smart drug delivery; Introduction
  • synthesized from mucoadhesive polymers such as chitosan, alginate, cellulose, polyacrylic acid, and polymethacrylic acid have been introduced as gastroretentive drug delivery systems. The mucoadhesive properties of these polymers are attributed to electrostatic bonding between polymer and sialic acid of mucin
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • inspiration from lollipops, Wang et al. developed a multilayered sodium alginate–chitosan hydrogel sphere drug delivery system, which uses ZnO-modified biocarbon (ZnO-BC) to enhance the photothermal conversion performance [70]. The hydrogel ball is embedded under the conjunctiva through surgery. ZnO-BC can
PDF
Album
Review
Published 17 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2025

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV–vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical
  • [10][11][12]. Sodium alginate, derived from marine algae, consists of β-ᴅ-mannuronic acid and its stereoisomer α-ʟ-guluronic acid, forming a linear block copolymer with branched chains [13][14]. This biopolymer possesses metal-binding functional groups that readily cross-link through strong
  • electrostatic bonds with multivalent metal cations (such as Ca2+, Ba2+, and Cu2+) to create an extensive gel network in water [15][16]. The cross-linking of saccharide chains within alginate generates macromolecules ranging in size from micrometers to millimeters, resulting in gelispheres insoluble in water
PDF
Album
Full Research Paper
Published 04 Oct 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • . Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties
  • , biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical
  • and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are
PDF
Album
Review
Published 22 Aug 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • Polymer mixtures contain at least one component besides the polymer, such as nanoparticles, inorganic salts, or other polymers. These types of polymer mixtures are used for medical purposes; for example, metronidazole/poly(ε-caprolactone) (PCL)/alginate for dental implants or poly(lactic acid
  • mildly cytotoxic to 155BR fibroblasts. Pázmány et al. also demonstrated that the extract of the hydrolyzed form of PSI cross-linked with 1,4-diaminobutane is not toxic to 155BR fibroblasts after 24 and 72 h of incubation [34]. Dodero et al. investigated the cytotoxicity of the extract from alginate
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4–6 nm, was confirmed by analytical techniques. The nanocomposite exhibited high
  • activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material. Keywords: alginate; bacterial activity; catalysis; lactose; silver nanoparticles; synthesis; Introduction
  • an in situ reduction process that requires no additional chemicals [16][17]. This technique using polysaccharides such as alginate [18] or chitosan [19] in conjunction with reducing agents enhanced cost efficiency and reduced the amounts of impurities or toxic compounds. AgNPs are widely used as
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • microorganisms, that is, cyanobacteria and yeast cells, have been immobilized in silica and silicate-based substrates organized as nanostructured materials. In a first attempt, matrices based on bionanocomposites of chitosan and alginate incorporating sepiolite clay mineral and shaped as films, beads, or foams
  • entrapment of microalgal species such as Chlorella vulgaris and Anabaena PCC7120 allowing for more than two months of viability [38]. In the present work, various bionanocomposites based on the combination of alginate and/or chitosan and sepiolite have been prepared and processed in different conformations
  • to be tested as immobilization matrices of microalgae. Sepiolite–alginate beads, sepiolite–chitosan/alginate thin films, and sepiolite–chitosan foams were produced (Figure 1). Sepiolite and biopolymer concentration, synthesis temperature, and microorganism concentration were modified to study their
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • , caffeic acid has also been reported to have antiviral, anticoagulant, anti-inflammatory, antibacterial, and anticancer activities [31][32][33][34]. Silver nanoparticles are an important example of different types of nanomaterials (copper, zinc, titanium, magnesium, gold, and alginate) that have been
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • . Different kinds of polymeric materials have been utilized including chitosan, alginate, fucoidan, carrageenan, and ulvan from natural polymeric materials. Polycaprolactone (PCL), poly ᴅ,ʟ-lactic-co-glycolic acid (PLGA), and polylactic acid (PLA) have been extensively studied with hydroxyapatite to develop
  • properties against Escherichia coli and Staphylococcus aureus were obtained [87]. In another study, Lu et al. (2018) developed a scaffolding system of copper ions incorporated in carboxymethyl chitosan and alginate for bone tissue repair. The porous size of the scaffolds was in the range of 45 to 107 μm and
  • activity was increased. In addition, Alizarin red S staining tests detected the development of mineralized nodules [81]. On the Ti substrate, TiO2 nanotubes carrying a gentamicin drug mixture were deposited. Furthermore, a combination of alginate and chitosan was utilized to cover the TiO2–gentamicin
PDF
Review
Published 29 Sep 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • attributed to the shrinkage of the polymer gel upon drying as suggested by previous studies [32][33]. A similarly faceted shape of microneedles was observed with polymeric microneedles made of chitosan and alginate [34]. Also, a similar microneedle shape was obtained using hydroxypropyl methyl cellulose and
PDF
Album
Full Research Paper
Published 15 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • scaffold by mixing them into the scaffold structure. Once incorporated, they provide new properties and possibly improve physical characteristics. In a study of in vitro and in vivo MSC chondrogenesis [26], the researchers encapsulated TGF-β3 in alginate microspheres coated with biofilm and subsequently
  • using separate loading systems may provide desirable kinetics for the sequential controlled release of growth factors. In line with this, a two-growth-factor system consisting of TGF-β2-loaded NPs encapsulated in a BMP-7-loaded alginate hydrogel enabled a slower release of TGF-β2 and a faster release of
  • improve the expression of the chondrogenic phenotype [110]. Fragmented PLA fibers incorporated into HA-grafted alginate hydrogel have been shown to increase the compressive modulus by approximately 81% compared to the nanofiber-free hydrogel scaffolds. Moreover, they maintained the round phenotype of the
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • alginate, gelatin, and chitosan to enhance strength and durability [70]. In another strategy to improve the bioactivity of titania scaffolds, alkaline phosphatase (ALP) was functionalized onto 3D TiO2 scaffolds based on a simple dip-coating method. ALP catalyzes the hydrolysis of organic phosphate that
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • mixture of PVA, sodium alginate, and PEO with incorporated nano-sized ZSM5 zeolite, which contains hydroxy functional groups (HZSM5). The maximum adsorption values of Th4+ and U6+ ions were found to be 274.6 and 144.7 mg/g, respectively, at a HZSM5 content of 10 wt %, an adsorbent dosage of 1 g/L, and pH
PDF
Album
Review
Published 31 Jan 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • treatments were significantly effective antiproliferative agents in concentrations of 12.5–100 μM, while the empty system (without CUR) showed no effect or potential toxicity. Subsequent experiements incorporated the nanoemulsion into an alginate microgel, which the authors argue may be useful as controlled
  • . Results showed that cells readily internalized MNP by endocytosis, which simultaneously allowed for imaging the affected cells [132]. Other report showed that, using the same breast cancer cells, alginate/chitosan MNP had a 3–6-fold increase in cellular uptake, as compared to F-CUR [133]. This has been
  • promising application of gold nanostructures with CUR-loaded alginate microgels, which showed photothermal properties. High CUR retention and preferential toxicity against cancerous cells was also shown. The photoactive agent, wavelength, time of exposure, and distance to the light source are important
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • auxin 1-naphthalenoacetic acid (ZnAl-NAA-LDH), (ii) the coating of bean seeds (Phaseolus vulgaris L.) with composite films produced from mixtures of alginate polymer and ZnAl-NAA-LDH, and (iii) the evaluation of the plant response by bioassays. The hybrid ZnAl-NAA-LDH was characterized by a set of
  • germination rate and germination speed index of the seeds, as well as biometric analyses including measurements of root area, root fresh matter, and shoot length of the plants. The bioassay performed in soil pots showed that the alginate film containing ZnAl-NAA-LDH yields an enhancement regarding root area
  • , fresh root matter and shoot length of plants. Thus, films produced from a mixture of alginate and the hybrid material containing the growth regulator intercalated into LDH can be a viable alternative to enhance plant development, which can be included in seed management. Keywords: bioassays
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • polysaccharides such as alginate, hyaluronic acid or chitosan, are widely used as biocompatible materials since they are biochemically similar to the native extracellular matrix (ECM) [16]. Chitosan is a biopolymer that combines excellent biocompatibility, low toxicity and antibacterial properties with a low
  • of nanometers to a few micrometers [21]. Blends of chitosan with alginate, silk, fibroin, cellulose or collagen can also be processed into composite fibers by electrospinning [22]. Wet-spinning is another well-established method of fabricating chitosan fibers with a diameter in the micrometer range
  • in which freshly-spun alginate fibers containing magnetic nanoparticles were fixed with a magnetized conical tip and rotated around micropillars, acquiring a helical shape with three to four windings [47]. Non-scalable procedures, such as high-temperature synthesis, photolithography or the use of
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • drying and spontaneously entrapped water-soluble positively charged rhodamine B molecules similar to wet capsules [33]. PAH/PMA capsules fabricated using an alginate-doped CaCO3 template displayed an interconnected matrix in the interior of hollow capsules, enhancing encapsulation of cationic molecules
  • most commonly used method is the movement of cargo from lower to higher concentration via a concentration gradient based diffusion process such as in case of Dox loading in GA cross-linked (chitosan-alginate)5 microcapsules [76]. At low feeding concentrations (e.g., 750 µg/mL), the drug loading was
  • cancer cells was achieved through folate-targeted sodium alginate/chitosan capsules. The lipid coating on the PAH/PSS microcapsule surface significantly reduced the permeability of the capsule walls [110]. Alternatively, carbohydrate functionalization has been widely used in hepatic drug delivery systems
PDF
Album
Review
Published 27 Mar 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • , typically an inorganic anion of low molecular weight, such as triphosphate (TPP) is used, while in the latter negatively charged polymers, e.g., hyaluronic acid (HA) [11][12] or alginate [13], are commonly used. HA is a particularly interesting component, since its presence allows for a reduced serum
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide

  • Yongcai You,
  • Ruirui Xing,
  • Qianli Zou,
  • Feng Shi and
  • Xuehai Yan

Beilstein J. Nanotechnol. 2019, 10, 1894–1901, doi:10.3762/bjnano.10.184

Graphical Abstract
  • hydrogel with crystal features and close-knit three-dimensional network structures. Importantly, the C-WY hydrogel exhibited adjustable rheological properties, excellent stability, and high tolerance under various conditions, including in the presence of charged biopolymers (poly-ʟ-lysine (PLL), alginate
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • for agricultural applications. In order to achieve a more controlled release of the herbicide and to act for several days on the surface of the soil, the hybrid nanoarchitectures were encapsulated in a biopolymer matrix of alginate/zein and shaped into spheres. In in vitro tests carried out in
  • in vitro tests of MCPA release, confirming the improvement of retention properties. For a better control in the MCPA release, the hybrid nanoarchitectures were also combined with mixtures of alginate–zein biopolymers [36] to improve the retention properties. Results and Discussion MCPA-LDH/sepiolite
  • ], a biopolymer mixture of alginate and zein incorporating the MCPAie-LDH hybrid prepared by ion exchange was able to reduce the initial release of MCPA by approximately 10–15% in the first 8 h. In the current work, the MCPA-LDH/Sep0.5:1_60C nanoarchitecture was selected, as it releases 100% of the
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • , MWCNTs and poly(vinyl alcohol) [25], sepiolite, graphene nanoplatelets, and biopolymers (e.g., alginate, gelatine) [26] and cellulose or foams of microfibrillated cellulose and starch [47], which exhibit Young’s moduli in the range from 0.1 to 9 GPa. The high stiffness of these materials has been
  • conductivity values, i.e., 2700 S·m−1 for alginate, 900 S·m−1 for gelatin, and 300 S·m−1 for poly(vinyl alcohol), and the chitosan matrix discussed here yielded conductivity of 2900 S·m−1 [26]. The increase of the conductivity in chitosan films can tentatively be ascribed to the presence of physically adsorbed
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • -based alternatives for wastewater purification. These flocculants are expected to be degradable and prevent secondary pollution to the natural environment. Biopolymer-based flocculants such as chitosan, tannins, cellulose and alginate are attracting wide interest from many researchers. Bio-based
PDF
Album
Review
Published 19 Sep 2018
Other Beilstein-Institut Open Science Activities