Search results

Search for "biocompatibility" in Full Text gives 256 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts

  • Sevin Adiguzel,
  • Nilay Cicek,
  • Zehra Cobandede,
  • Feray B. Misirlioglu,
  • Hulya Yilmaz and
  • Mustafa Culha

Beilstein J. Nanotechnol. 2025, 16, 1068–1081, doi:10.3762/bjnano.16.78

Graphical Abstract
  • properties due to its noncentrosymmetric crystal structure, making it a promising material for biomedical applications such as bone regeneration, where it can convert mechanical stimuli into bioelectrical signals. Additionally, the biocompatibility and ability of hBN to be integrated into composite scaffolds
  • [30][31]. The piezoelectric property of 2D hBN arises from its noncentrosymmetric structure, supported by these van der Waals interactions [32]. The excellent biocompatibility of hBN makes it attractive for diverse applications, including cosmetics, drug delivery, cancer treatment, orthopedic implants
  • results demonstrate that both NMs exhibited robust piezoelectric properties and confirmed their exceptional biocompatibility, with no toxicity observed even at the highest concentrations tested. The mechanical stress induced by the US prompts micromechanical interaction with cells. This, in turn, triggers
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • integrated with the solvent [279][280][281]. Furthermore, gel materials with excellent stimuli responsiveness and biocompatibility have also been widely developed. As the nanoarchitectonics of the polymers and molecular aggregates that constitute gels evolve, the design and functionality of gels are becoming
PDF
Album
Review
Published 04 Jul 2025

A calix[4]arene-based supramolecular nanoassembly targeting cancer cells and triggering the release of nitric oxide with green light

  • Cristina Parisi,
  • Loredana Ferreri,
  • Tassia J. Martins,
  • Francesca Laneri,
  • Samantha Sollima,
  • Antonina Azzolina,
  • Antonella Cusimano,
  • Nicola D’Antona,
  • Grazia M. L. Consoli and
  • Salvatore Sortino

Beilstein J. Nanotechnol. 2025, 16, 1003–1013, doi:10.3762/bjnano.16.75

Graphical Abstract
  • , characterized by the presence of a cavity with remarkable hosting properties and synthetic versatility [1][2][3][4][5]. Water soluble calixarenes can be obtained by the introduction of appropriate hydrophilic moieties in the calixarene molecular scaffold, leading to a good biocompatibility and low
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • required, especially when processing sensitive nutraceuticals intended for the use as food additives or medical applications. This is complemented by evaluations of the biocompatibility and antioxidant features (i.e., suppression of reactive oxygen species (ROS)) of laser-processed curcumin. Results and
  • photomechanical effects is fulfilled, causing shock wave formation. Analogously to our previous works on organic drugs [43] and on inorganic oxide MPs [14], it is again shown that the dominant fragmentation effect is due to photomechanical comminution and that thermal effects are negligible. Biocompatibility and
  • biocompatibility. In detail, a threshold viability of 80% was reached at a 1:2560 dilution (0.195 mg·L−1) for the unirradiated sample; the tolerance for the laser-fragmented curcumin samples, however, was ca. 30 times higher even at a lower dilution of 1:160 (6.25 mg·L−1) (Figure 8A). The main difference between
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • . In this context, the incorporation of graphene-based materials into dental biomaterials could offer advantages such as increased mechanical strength. Nevertheless, biocompatibility issues still hinder their adoption. In this study, a biocomposite of few-layered graphene and tannic acid (FLG–TA) was
  • , demonstrating no cytotoxicity to periodontal ligament cells up to 200 µg·mL−1 while promoting cellular adhesion and maintaining chromatin integrity. Overall, because of its favorable biocompatibility FLG–TA holds promise as a novel biomaterial for dental applications. Keywords: antioxidant properties
  • ; biocompatibility; dental applications; few layered graphene–tannic acid biocomposite (FLG–TA); periodontal ligament cells (PDL); Introduction Dental diseases remain a global health challenge [1]. Dental biomaterials are crucial in both therapeutic and preventive strategies, with nanotechnology emerging as a
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • silk fibroin (SF) and highlights their benefits as a skin substitute. This review also highlights the electrospinning technique used to prepare nanofibers for these biomedical applications. Silk, well-known for its excellent biocompatibility, biodegradability, structural properties, and low immunogenic
  • response, is extensively investigated by addressing its molecular structure, composition, and medical uses. PU is a candidate for potential biomedical applications because of its strength, flexibility, biocompatibility, cell-adhesive properties, and high resistance to biodegradation. PU combined with silk
  • , produced by silkworms, beetles, mites, and spiders [14]. Silk is an FDA-approved biomaterial for medical applications [15]. SF has distinctive physical, chemical, and mechanical properties [16]. Its characteristics, including biocompatibility, biodegradability, elasticity, solubility in water, and ease of
PDF
Album
Review
Published 24 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
PDF
Album
Review
Published 22 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • (HE12-Luc-ASO), or (dodecane-co-hexaethylene glycol)-ASO ((HE-HEG)6-Luc-ASO). Linear PEI complexes demonstrated high biocompatibility even at high molecular weights, whereas b-PEI induced significant cytotoxicity. Moreover, the cell-uptake efficiency was improved by increasing the N/P ratio. The
  • ) (PAMAM) dendrimers have gained significant attention as a versatile platform for antisense delivery, largely owing to their superior biocompatibility, biodegradability, and ASO-loading capabilities compared to other cationic systems including PEI and PPI dendrimers [141]. Moreover, the presence of
PDF
Album
Review
Published 27 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • and PCL to produce amphiphilic nanoparticles which possess both hydrophilic and hydrophobic segments. PEG, known for its water solubility and biocompatibility, provides the hydrophilic component, while PCL, a biodegradable polyester, contributes with hydrophobicity, enabling the formation of
PDF
Album
Full Research Paper
Published 20 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • systems because of their ability to form gel-like structures in the presence of divalent cations such as Ca2+. Despite the advantages of alginate polymer such as its biodegradability, biocompatibility, and gelation ability, its instability, fast wettability, and rapid release at high pH result in the
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • biocompatibility, biodegradability, and similarity to the extracellular matrix (ECM) [101]. Electrospinning pure chitosan without any other precursor material, however, presents significant challenges due to its inherent properties. Chitosan has high viscosity and low solubility in most solvents, and it tends to
  • spinnability of fibers by reducing repulsive forces within charged polymer solutions [105]. While PVA nanofibers offer advantages such as ease of fabrication and biocompatibility, applications of single-material PVA nanofibers are usually limited by their poor mechanical properties, high water solubility and
  • selecting the plasma source and controlling discharge conditions such as voltage, pressure, and gas flow rate, various functional groups can be introduced on the fiber surface, enabling tailored modifications that enhance polymer biocompatibility. Punamshree et al. [162] performed surface modification of
PDF
Album
Review
Published 26 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • (i.e., oxidation) of their surface, CNs with optimal hydrophobic/hydrophilic properties and increased dispersibility can be obtained as preconditions for biocompatibility and low immunogenicity. Also, improved electronic, mechanical, and thermal properties as preconditions for (photo)thermal and
  • exclude their molecular interactions with the GBM cells and a contribution to the cytotoxicity of the formulations. Despite the evidence for excellent biocompatibility of PEG, there are papers demonstrating that PEG (depending on the molecular weight) may show selective dose- and time-dependent cytostatic
  • effect of PEG on cell growth and its biocompatibility by inducing metabolism modulations and survival autophagy through creating an intracellular hypoxic environment. Although there is no consensus on whether the role of folate in cancer cells is protective or harmful, a cytotoxic effect was also
PDF
Album
Full Research Paper
Published 19 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • microorganisms. Nanomaterials, particularly nanohydroxyapatite (nHA), have garnered attention for sustaining rhizobacterial viability, high loading capacity, high biodegradability, and biocompatibility, which facilitate microbial interactions. In this study, nHA was synthesized using a hydrothermal method and
  • , biocompatibility, and the ability to absorb organic substances [20][21]. Furthermore, nHA possesses the unique ability to be resorbed within physiological environments while remaining non-toxic, a feature that holds significant promise for synergistic interactions with microorganisms and biological molecules [22
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • , including exceptional biocompatibility, biodegradability, wide availability, low cost, and a highly tunable structure, making them well-suited for such uses [67][68][69][70][71]. 2.3 Inorganic semiconductor materials Inorganic semiconductor materials, such as TiO2, SiO2, and Fe2O3, possess conductivity
  • synthesis of AuNPs and served as a surface coating for AuNPs, promoting the coupling of DOX, enhancing anti-tumor activity, and improving the biocompatibility of AuNPs. The significant extinction coefficient of these nanoparticles enhances the contrast in photoacoustic imaging within the tumor region
  • therapeutic effects in humans [213]. The safety profile of photothermal nanomaterials is influenced by various factors, including their morphology, structure, concentration, photothermal stability, mechanical strength, and surface chemistry [214]. Enhancements in biocompatibility and stability can be achieved
PDF
Album
Review
Published 17 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • , respectively, demonstrating a dose-dependent cytotoxic effect at elevated lipid concentrations. SO-Lipo displayed a similar trend, maintaining non-significant cytotoxicity from 15.625 to 250 µM (p > 0.05), supporting the biocompatibility of the SO modification at lower concentrations. A noticeable reduction in
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • Biomimetic nanocarriers, engineered to mimic the characteristics of native cells, offer a revolutionary approach in the treatment of various complex human diseases. This strategy enhances drug delivery by leveraging the innate properties of cellular components, thereby improving biocompatibility and
  • therapeutical characteristics as demonstrated in Figure 1-1. In the field of drug delivery, properties such as size, surface-to-volume ratio, and biocompatibility have driven the development of nanoscale-based devices [6][7][8][9]. Nanocompounds offer a strategic approach to addressing or at least improving the
  • (Figure 1-2C), which mask the nanocarriers and enhance biological activity (Figure 1-2D) [20]. This mimetic surface helps the device to mask epitopes potentially recognized by the immune system, thereby enhancing their biocompatibility. Additionally, the selectivity for targets and the circulation time of
PDF
Album
Perspective
Published 16 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • specific biological targets. This study evaluated the biocompatibility of Fe3O4 NPs, Teucrium polium (T. polium) extract, rutin, and the corresponding complexes on the liver tissue of healthy white Wistar rats. The impact profile of the synthesized Fe3O4 NPs (15 ± 4 nm), rutin, T. polium extract, and their
  • samples on the liver of Wistar rats was identified. Keywords: biocompatibility; hepatotoxicity; iron oxide (Fe3O4) nanoparticle; rutin; Teucrium polium (T. polium); Introduction Leveraging nanotechnology, personalized medicine, and interdisciplinary collaboration is essential for overcoming the complex
  • in most biological and chemical reactions involved in the production of medical materials [10][11][12][13]. Magnetic nanoparticles (MNPs), such as iron oxides, not only exhibit superparamagnetism and high magnetic susceptibility, they also possess unique physical properties, biocompatibility
PDF
Album
Full Research Paper
Published 11 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • , lipids provide more space for drug encapsulation and biocompatibility of the system. Therefore, the advancement in the LPHNPs yields better and prolonged therapeutic efficacy. Different types and structural advantages of PLHNPs are illustrated in Figure 1 and are discussed in detail as follows. Polymer
  • . This leads to improved bioavailability and allows for sustained release of the encapsulated therapeutic agents [64][65][66]. The advantages of PEGylated PLHNPs include enhanced biocompatibility and reduced immunogenicity. The PEG layer creates a hydrophilic barrier around the nanoparticles, which
  • and lipid-based carriers, providing stability, biocompatibility, and efficient drug encapsulation. Applications of stimuli-responsive PLHNPs are vast and impactful. In cancer therapy, they are used to deliver chemotherapeutic agents specifically to tumor sites, where the acidic microenvironment or
PDF
Album
Review
Published 22 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • advantages of liposomes include, but are not limited to, high biocompatibility, biodegradability, and prolonged retention in the blood stream when pegylated [91]. Despite their significant advantages, liposomes could also suffer from disadvantages such as short half-life in the body environment and drug
  • drug reach the brain. Recent literature highlights SLNs, NLCs, liposomes, polymeric NPs, and emulsions. While lipid-based NPs are favorable because of their lipophilicity and biocompatibility, polymeric NPs offer greater control over drug release, stability, and mechanical properties [123]. Furthermore
PDF
Album
Review
Published 12 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • omniphobic. Keywords: biocompatibility; biomimetic; blood-contacting; hemocompatibility; non-fouling; Introduction Clot formation and the overall compatibility of artificial materials within the body remains a common complication of blood contacting surfaces [1][2][3][4][5][6][7][8]. A critical hurdle in
  • any foreign surface. Materials coated with SLIPS have demonstrated effectiveness in resisting corrosion, reducing bio-fouling, and preventing icing [1][2][3][6][8]. There is also evidence that SLIPS are a promising strategy for increasing the biocompatibility of materials [4][11]. SLIPS are generally
  • and a Tukey post-hoc comparison were performed to determine differences between means. For biocompatibility data that was normalized to glass, the error from glass is imbedded in the reported standard deviation. Sample sizes for presented data is included in the figure captions and reported as the
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • Hymenopteran venom delivery systems, advanced microinjection devices can be crafted for laboratory applications, boasting painless insertion and extraction, minimal dermal injuries, mechanical durability, and suitable biocompatibility [172]. Furthermore, the capacity to induce mechanical tissue damage may vary
PDF
Album
Review
Published 05 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • that changes in the oxygen content of GO may improve its biocompatibility. They found that GO sheets with reduced oxygen content and relatively more –COOH groups did not presented the common GO toxicity effects to C. elegans, such as increased intestinal permeability, microvilli damage, material
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • functions [54][69][70][71][72][73][74][75]. Therefore, a thorough evaluation of their biocompatibility is necessary before advancing their clinical applications. In the context of cancer treatment, the efficient renal clearance and short blood elimination half-life of usNPs raise questions about their
  • microenvironment, thus enhancing treatment efficacy. The study revealed that 64Cu-Cu@CuOx-ECL1i exhibited suitable biodistribution and biocompatibility. Moreover, 64Cu-Cu@CuOx-ECL1i-Gem was able to induce tumor inhibition and to prolong survival in a syngeneic xenograft mouse model of PDAC. 5.7 Antibody-based
PDF
Album
Review
Published 30 Sep 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • , such as water solubility, biodegradability, biocompatibility, and hypoallergic response. It has been shown that PHFs can inhibit cancer tumor growth and positively regulate the immune system [26]. The same is valid for carboxylated fullerenes [27]; for instance, C60[C(COOH)2]3 is well known for its
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024
Other Beilstein-Institut Open Science Activities