Search results

Search for "catalyst" in Full Text gives 373 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Durable antimicrobial activity of fabrics functionalized with zeolite ion-exchanged nanomaterials against Staphylococcus aureus and Escherichia coli

  • Perla Sánchez-López,
  • Kendra Ramirez Acosta,
  • Sergio Fuentes Moyado,
  • Ruben Dario Cadena-Nava and
  • Elena Smolentseva

Beilstein J. Nanotechnol. 2026, 17, 262–274, doi:10.3762/bjnano.17.18

Graphical Abstract
  • fabrics. In this process, crosslinking reactant, catalyst, softener, and other components are dried onto the fabric before the crosslinking reaction takes place during the curing stage [26][27][28]. Lateef et al. applied the pad–dry–cure method to functionalize commercial cotton and silk with Ag NPs using
PDF
Album
Full Research Paper
Published 06 Feb 2026

Gold nanoparticle-decorated reduced graphene oxide as a highly effective catalyst for the selective α,β-dehydrogenation of N-alkyl-4-piperidones

  • Brenda Flore Kenyim,
  • Mihir Tzalis,
  • Marilyn Kaul,
  • Robert Oestreich,
  • Aysenur Limon,
  • Chancellin Pecheu Nkepdep and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2026, 17, 218–238, doi:10.3762/bjnano.17.15

Graphical Abstract
  • reduced graphene oxide (AuNPs/rGO) were demonstrated to be a highly reactive catalyst for the selective α,β-oxidative dehydrogenation (ODH) of N-alkyl-4-piperidones, using N-methyl-, N-ethyl- and N-benzyl-4-piperidone. The substrate N-methyl-4-piperidone represents a pharmaceutically relevant system as
  • carbon (AC), and carbon black (CB), to investigate the influence of the carbon support on the catalyst performance. As stabilizing agents for the AuNPs, citrate (Cit) and the polyoxometallate [SiW9O34]10− (SiW9) were used. Among the tested catalysts, the rGO-supported ones, Au-Cit/rGO, Au-SiW9/rGO, and
  • facilitate charge transfer between the metal and the support, enhancing the activation of molecular oxygen and promoting the oxidative dehydrogenation (ODH) pathway. This synergistic interaction should not only improve the intrinsic catalytic activity but also allow the catalyst to achieve high efficiency
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2026

Time of flight secondary ion mass spectrometry imaging of contaminant species in chemical vapour deposited graphene on copper

  • Barry Brennan,
  • Vlad-Petru Veigang-Radulescu,
  • Philipp Braeuninger-Weimer,
  • Stephan Hofmann and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2026, 17, 200–213, doi:10.3762/bjnano.17.13

Graphical Abstract
  • quality control method. These results highlight the significance of understanding the role of trace contaminants and elemental distributions within the catalyst in conjunction with growth parameters for optimised CVD of graphene layers. Keywords: contamination; copper; CVD; graphene; ToF-SIMS
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2026

Safe and sustainable by design with ML/AI: A transformative approach to advancing nanotechnology

  • Georgia Melagraki

Beilstein J. Nanotechnol. 2026, 17, 176–185, doi:10.3762/bjnano.17.11

Graphical Abstract
  • to fostering a transparent, socially responsible nanotechnology landscape. Through the convergence of hybrid modelling, digital twins, and informed policy, SSbD can continue to evolve into a powerful catalyst for safer, more sustainable innovation in the nanoscale area. Conclusion ML and AI, in
PDF
Album
Perspective
Published 16 Jan 2026

Functional surface engineering for cultural heritage protection: the role of superhydrophobic and superoleophobic coatings – a comprehensive review

  • Giuseppe Cesare Lama,
  • Marino Lavorgna,
  • Letizia Verdolotti,
  • Federica Recupido,
  • Giovanna Giuliana Buonocore and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2026, 17, 63–96, doi:10.3762/bjnano.17.6

Graphical Abstract
PDF
Album
Review
Published 07 Jan 2026

Optical bio/chemical sensors for vitamin B12 analysis in food and pharmaceuticals: state of the art, challenges, and future outlooks

  • Seyed Mohammad Taghi Gharibzahedi and
  • Zeynep Altintas

Beilstein J. Nanotechnol. 2025, 16, 2207–2244, doi:10.3762/bjnano.16.153

Graphical Abstract
  • hydroxide to catalyze a Fenton-like, ultraweak CL reaction for specifically detecting VB12 in egg yolk [111], where the surfactant-modified catalyst served as the recognition site, the peroxide reaction acted as the indicator system, and the ultraweak CL emission was the analytical signal. They determined
PDF
Album
Review
Published 05 Dec 2025

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
  • . Similarly, spherical CuS NPs were produced upon ablation of a Cu target in the same experimental conditions. Therefore, the authors suggest the participation of Cu as a catalyst for the growth of ZnS nanowires. Even more complex reaction pathways were suggested by Tian et al. [25] for the formation of PbS
PDF
Album
Perspective
Published 10 Nov 2025

Piezoelectricity of layered double hydroxides: perspectives regarding piezocatalysis and nanogenerators

  • Evgeniy S. Seliverstov,
  • Evgeniya A. Tarasenko and
  • Olga E. Lebedeva

Beilstein J. Nanotechnol. 2025, 16, 1812–1817, doi:10.3762/bjnano.16.124

Graphical Abstract
  • materials, in some cases having an advantage over three-dimensional bulk counterparts [4]. Traditionally, LDHs are known as adsorbents, anion exchangers, catalysts, and catalyst precursors, but the wide range of their properties is not limited to this, as the discovery of piezoelectric properties has shown
  • /Al-LDHs. The crystal structure of LDHs is fairly flexible, enabling adjustment of their cationic composition. One widely used method for preparing LDH-based catalysts is cation doping further increasing their catalytic activity. A cobalt-doped Zn/Al-LDH (ZnCo/Al-LDH) piezoelectric catalyst was used
  • for activating peroxymonosulfate (PMS) to degrade norfloxacin [9]. The obtained catalyst demonstrated effective degradation within 15 min, achieving a degradation efficiency of 91.50% and a rate constant of 0.1644 min−1. In this study, the main PMS activation mechanism was non-radical. The
PDF
Album
Review
Published 20 Oct 2025

Ambient pressure XPS at MAX IV

  • Mattia Scardamaglia,
  • Ulrike Küst,
  • Alexander Klyushin,
  • Rosemary Jones,
  • Jan Knudsen,
  • Robert Temperton,
  • Andrey Shavorskiy and
  • Esko Kokkonen

Beilstein J. Nanotechnol. 2025, 16, 1677–1694, doi:10.3762/bjnano.16.118

Graphical Abstract
  • here. Instead, we focus on a study by Vesselli and co-workers that directly addresses catalytic activity in a biomimetic SAC system [20][21]. In their work, a cobalt single-atom biomimetic model catalyst is based on a self-assembled monolayer of Co-porphyrins grown on an almost free-standing graphene
  • simultaneously. This is summarized in Figure 5 where the 2D intensity plot vs temperature of O 1s and N 1s or C 1s, for hBN or graphene, respectively, are reported. Time-resolved catalysis Catalysts are inherently dynamic systems. The optimal catalyst should have a nanostructure that enhances activation kinetics
  • , contain active sites that are dynamically stabilized, and be in a state of deviation from chemical equilibrium under reaction conditions. Therefore, fully describing a functional catalyst requires addressing a range of dynamics across multiple temporal scales. To examine such a dynamic at the atomic level
PDF
Album
Review
Published 24 Sep 2025

Nanotechnology-based approaches for the removal of microplastics from wastewater: a comprehensive review

  • Nayanathara O Sanjeev,
  • Manjunath Singanodi Vallabha and
  • Rebekah Rubidha Lisha Rabi

Beilstein J. Nanotechnol. 2025, 16, 1607–1632, doi:10.3762/bjnano.16.114

Graphical Abstract
  • include ultraviolet-induced oxidation, ozone-based oxidation, photocatalysis (activated by UV, solar, or visible light), electrochemical oxidation, and persulfate-activated oxidation [57]. In photocatalysis, photons excite the catalyst, generating electron–hole pairs that trigger redox reactions with the
  • semiconductor catalyst. In contrast, for reduction to occur, the redox potential must be lower than the conduction band edge. This is because, upon excitation, holes generated in the valence band participate in oxidation reactions, whereas the electrons excited to the conduction band drive the reduction
PDF
Album
Review
Published 15 Sep 2025

Photocatalytic degradation of ofloxacin in water assisted by TiO2 nanowires on carbon cloth: contributions of H2O2 addition and substrate absorbability

  • Iram Hussain,
  • Lisha Zhang,
  • Zhizhen Ye and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2025, 16, 1567–1579, doi:10.3762/bjnano.16.111

Graphical Abstract
  • retained over 90% of its efficiency even after 6 cycles demonstrates the stability of the CC/NW-450 °C photocatalyst. SEM and XRD data of the catalyst after the recycling experiment are shown in Figure S8 in Supporting Information File 1, from which no remarkable change can be seen because of its high
  • structural stability. High photocatalytic activity over multiple cycles, along with simple, low-cost, and stable operation, are the key parameters for their promising applications in practical wastewater treatment, in which the frequent replacement or regeneration of the catalyst must be avoided. Influence
  • catalyst alone, indicating that the limited •OH radical generation was effectively quenched by n-butanol. As H2O2 concentration increased to 10 mM, a slight improvement in degradation was observed, suggesting that •OH radical production began to exceed the scavenging capacity of n-butanol. The most
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2025

Influence of laser beam profile on morphology and optical properties of silicon nanoparticles formed by laser ablation in liquid

  • Natalie Tarasenka,
  • Vladislav Kornev,
  • Alena Nevar and
  • Nikolai Tarasenko

Beilstein J. Nanotechnol. 2025, 16, 1533–1544, doi:10.3762/bjnano.16.108

Graphical Abstract
  • temperature [5][22] or pressure [23], or the presence of a catalyst [24]. Consequently, alternative approaches for the formation of Si nanowires by laser ablation in liquid environment and under ambient conditions are of high interest. In this work, we have applied a method based on the change of the spatial
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • commonly used click reactions and shows high specificity [15][16]. The Cu(I) catalyst increases the coupling rate of azides and alkynes by up to seven orders of magnitude, forming triazole rings, which possess exceptional chemical stability [16]. For these reasons, the CuAAC has been utilized extensively
  • ) catalyst (Figure 3B.ii), and one in which IONP-3,4-DHBA (no alkynes) was subjected to the full CuAAC reaction (Figure 3B.iii). We see that, in both controls, there is no detectable Cy5 loading on the IONPs, which suggests that the loading of Cy5-azide is, in fact, through the CuAAC, thus providing strong
  • /NHS activation. In the absence of the Cu(I) catalyst, we see no trace of Cy5 on the EDC-free control (Figure 3C.ii), which confirms that Cy5-azide is loading to the control through the CuAAC. This further provides evidence that, in the absence of EDC/NHS activation, PPA must still somehow bind to IONP
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Parylene-coated platinum nanowire electrodes for biomolecular sensing applications

  • Chao Liu,
  • Peker Milas,
  • Michael G. Spencer and
  • Birol Ozturk

Beilstein J. Nanotechnol. 2025, 16, 1392–1400, doi:10.3762/bjnano.16.101

Graphical Abstract
  • water as a catalyst, then the final product gluconolactone was generated [28][29]. These reactions were illustrated in Scheme 2. Similarly, peaks were observed to be same during the reverse scan [29]. Based on curve shape and reaction mechanism, the peaks from the reverse curve around 50 mV were
PDF
Album
Full Research Paper
Published 20 Aug 2025

Ferroptosis induction by engineered liposomes for enhanced tumor therapy

  • Alireza Ghasempour,
  • Mohammad Amin Tokallou,
  • Mohammad Reza Naderi Allaf,
  • Mohsen Moradi,
  • Hamideh Dehghan,
  • Mahsa Sedighi,
  • Mohammad-Ali Shahbazi and
  • Fahimeh Lavi Arab

Beilstein J. Nanotechnol. 2025, 16, 1325–1349, doi:10.3762/bjnano.16.97

Graphical Abstract
  • independently of GSH deficiency (or GSH depletion). Hemin initiates this reaction as an iron catalyst to respond to the excess H2O2 [29]. Another way of triggering ferroptosis is the oxidation of unsaturated lipids by an iron redox couple, which can also lead to ferroptosis. This process of inducing ferroptosis
  • ferrocene (a green Fenton catalyst) was calculated to be about 43.4%. Liposome-PEG loaded with ferrocene showed increased ferrocene release in the presence of H2O2 and under acidic conditions while preventing significant leakage of ferrocene during circulation of body fluids. It has been suggested that
PDF
Album
Review
Published 14 Aug 2025

Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos

  • Vladimir Pimonov,
  • Said Tahir and
  • Vincent Jourdain

Beilstein J. Nanotechnol. 2025, 16, 1316–1324, doi:10.3762/bjnano.16.96

Graphical Abstract
  • , horizontally aligned carbon nanotubes (HA-CNTs) were synthesized inside a miniature chemical vapor deposition (CVD) cell with an optical window (Linkam TS1500). ST-cut quartz and iron nanoparticles served as substrate and catalyst, respectively. Ethanol and argon were, respectively, used as carbon precursor
  • a deep learning model to recognize and track both growing nanotubes (dark segments) and structural changes (bright segments) in such differential videos. The model was also trained at recognizing optical marks and catalyst lines (Figure 2) [20]. Kinetic data extraction proceeded in the following
  • [24] (Supporting Information File 1, Table S1). The fully trained model detected segments corresponding to nanotube growth and structural changes, as well as optical marks and catalyst lines (Supporting Information File 1, Figure S5, and Supporting Information File 3). This process was conducted frame
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • on density functional theory calculations of binding energies and machine learning algorithms for an efficient catalyst design [15][17][19]. The synthesis of HEA NPs has been realized by many methods, including carbothermal shock synthesis (CTS) [20][21], chemical reduction [22][23], fast-moving bed
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
PDF
Album
Review
Published 04 Jul 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • coating of diamond surface with a metal catalyst has been explored to reduce the temperatures required for the initiation of the graphitization process. Nickel [17][18][19][20][21][22][23][24], iron [25][26][27][28], copper [29][30], gallium [31], and molybdenum [32] allow the fabrication of graphene-on
  • SCD surface into graphene requires annealing at temperatures above 800 °C [21]. The annealing of nanocrystalline diamond (NCD) films in the presence of a Ni catalyst has been recently explored [22][23][24]. It was shown that graphitization of Ni-coated NCD films begins at a relatively lower
  • findings that the metal catalyst induces the formation of disordered carbon on the diamond surface during annealing [21][22][23]. All spectra also show a weak feature at 285.5 eV, which corresponds to the electron transitions from C 1s to unoccupied π* states in sp2-hybridized carbon species (π*(sp2)). It
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • its sensitivity, the method, when combined with other techniques, has provided quantitative information on the number of electrons transferred per particle to the support (Figure 2), enabling the optimization of the size of the supported active Pt catalyst [27]. This is a crucial factor in minimizing
  • active sites in catalysts is a crucial problem in view of the optimization of catalyst efficiency and selectivity. The possibility of carrying out spectroscopic studies under conditions as close as possible to ambient pressure has largely contributed to this goal. The application of these methods to
  • model catalyst”, pages 8-13, Copyright (2019), with permission from Elsevier. This content is not subject to CC BY 4.0. (a) Ce–O interatomic distances for 2 ML and 10 ML CeO2 films evaluated by fitting Ce L3-edge EXAFS with the electric field parallel (dCe−O PAR) and perpendicular (dCe−O PER) to the
PDF
Album
Review
Published 10 Jun 2025

Facile one-step radio frequency magnetron sputtering of Ni/NiO on stainless steel for an efficient electrode for hydrogen evolution reaction

  • Ha Huu Do,
  • Khac Binh Nguyen,
  • Phuong N. Nguyen and
  • Hoai Phuong Pham

Beilstein J. Nanotechnol. 2025, 16, 837–846, doi:10.3762/bjnano.16.63

Graphical Abstract
  • energy of hydrogen/water adsorption. Also, inexpensiveness and high durability are positive aspects regarding large-scale applications. For instance, Oshchepkov and coworkers revealed that the efficacy of NiO in cleaving H–OH bonds accelerated the formation of hydrogen on a Ni metal catalyst [17]. Yan
  • electrocatalytic applications [30]. For instance, Wang et al. deposited nickel–iron on SS, which was used as a high-performance electrode for water oxidation [31]. Hence, in this study, we utilized commercial 304 SS and coated it with the Ni/NiO catalyst through a one-step radio frequency (RF) magnetron sputtering
  • exhibited a moderate O2 content (11.96 wt %), which could bring the highest HER efficiency. The Ni/NiO ratio is the most crucial parameter in the Ni/NiO catalyst system, influencing the electrode’s HER efficiency, which Yan and coworkers proved [18]. The Raman spectrum of the Ni/NiO/SS-10 electrode
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • . An optimum height above burner of 10 mm at which the temperature is around 650 °C was used in the synthesis process. Zirconia beads impregnated with nickel nitrate catalyst have been employed. Dense CNF growth with an average diameter of 77.9 nm was observed at an equivalence ratio of 1.8; as the
  • nucleation rate, which in turn increases the catalyst particle size and the amount of free carbon atoms, producing CNFs with larger diameters and amorphous carbon. According to Raman analysis, the grown CNFs have a high number of defects, which may be good for applications where defective nanomaterials are
  • optimization of CNT/CNF synthesis in flame environments. An ethylene/air co-flow, non-premixed flame was used with a catalyst substrate of iron, nickel, and platinum wires of 0.1–0.25 mm diameter. The study found that carbon monoxide is a major contributor to CNT formation in flames, and the model also showed
PDF
Album
Full Research Paper
Published 23 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • Ni2+ isolated cations, attributed to synergistic interactions that weakened the cation–framework binding. Catalytic activity tests showed that nickel species were primarily responsible for citronellal formation. Among all materials, the bimetallic CoNiIE catalyst, prepared by IE, was the only one to
  • and cinnamaldehyde [3][14][15]. Zeolites modified with nickel and cobalt have shown promising results in selective hydrogenation reactions, owing to their high dispersion of active sites and tunable acidity. For instance, a zeolite-supported Ni catalyst has demonstrated selectivity in furfural
  • hydrogenation and the formation of citronellal are higher for catalysts containing nickel compared to those containing cobalt (Figure 6). This suggests that the most active catalytic sites for the conversion of citral to citronellal are associated with nickel species. Notably, the bimetallic CoNiZIE catalyst is
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • water electrolysis catalyst than IrO2 [32]. The combination and composition of elements are important to achieve superior properties to those of pure metal nanoparticles. The typical method for nanoparticles synthesis such as chemical reduction with thermal equilibrium reaction is basically limited to
PDF
Album
Full Research Paper
Published 27 Mar 2025
Other Beilstein-Institut Open Science Activities