Search results

Search for "crystallinity" in Full Text gives 317 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • a high degree of local crystallinity (i.e., high ordering of carbon atoms in the honeycomb network) and their C K-edge spectra contain a narrow and intense π*(sp2)-resonance [41][42]. However, the rather low intensity of the π*(sp2)-resonance in the spectrum of the annealed Ni-PCD film indicates
  • indicate the high crystallinity of the sp3 lattice and the low concentration of nondiamond phases in the annealed PCD. The spectrum taken from the area between the microcrystallites, in addition to the diamond band, shows a weak Raman signal from the sp2-hybridized carbon, namely a broad G band at 1580 cm
  • crystallinity of the sp2 carbon coating was observed in the case of the SCD substrate. Changing the angle between the synchrotron beam and the flat surface of Ni-SCD revealed a significant increase in the π*(sp2) peak intensity at normal incidence. This behavior indicates an anisotropic texture of sp2 carbon
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • merges completely with disorder-induced broad band at higher fluences. Moreover, the deconvolution of the A1 (LO) Raman peak affirms the presence of defect-related Raman modes in the implanted samples. A gradual reduction in crystallinity of the implanted ZnO films with increasing ion fluence is observed
  • intense (002) peak is further analyzed. The intensity of the peak reduces with increasing ion fluence, revealing a reduction in crystallinity. This is due to argon ion implantation-induced lattice damage. Yet, even at the highest fluence, complete amorphization is not detected. ZnO films were implanted
  • found to be 14.42 ± 0.35 nm. It decreases slowly with the rise in implantation fluence and achieves a value of 10.97 ± 0.47 nm at the highest ion fluence due to a reduced crystallinity of the implanted films. Moreover, argon atoms can reside on substitutional sites of the ZnO lattice, which causes
PDF
Album
Full Research Paper
Published 11 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • of the core than of its surface layer. It should be added here that the presence of the uncompensated spins randomly distributed within the nanoparticle core volume, indicating poor crystallinity, is in line with the absence of high intensity, sharp peaks from the Fe phase in the XRD spectrum. Small
PDF
Album
Full Research Paper
Published 02 Jun 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • the samples are the higher specific surface areas in the irradiated curcumin dispersions, as well as a potential decrease in particle crystallinity. Both effects are known to increase the water solubility of curcumin, yielding higher total concentrations of dissolved active and bioavailable curcumin
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • , atomic force microscopy, and transmission electron microscopy analyses revealed that the TaN films exhibit excellent crystallinity and smooth surface morphology, when deposited at optimal temperatures of 750 and 850 °C. The films exhibit superconducting transition temperatures (Tc) ranging from 5.0 to
  • could be pushed up to 10.8 K [13]. The Tc of TaN depends strongly on the crystallinity and stoichiometry of the thin films. Reports mentioned that pulsed laser deposition (PLD) in the reactive pulsed laser deposition (RPLD) mode is an efficient method for the growth of high-quality thin films [14]. In
  • dynamics and superconducting characteristics of the films. X-ray diffraction (XRD) analysis revealed that the TaN thin films exhibited excellent crystallinity, with sharp diffraction peaks indicating well-defined structural phases. The deposition process was optimized by systematically adjusting substrate
PDF
Album
Full Research Paper
Published 22 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • exhibited less sharp peaks than APT because of a reduction of the polymer crystallinity. Also, the interaction of polymeric content with APT via hydrogen bonding converts the crystalline form of APT into an amorphous form [20]. TGA and DSC studies Thermogravimetric analysis showed that the thermal
PDF
Album
Full Research Paper
Published 15 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • macrophages and foreign bodies [127]. The degree of crystallinity is the key factor in developing biostable PU compounds. PU has two segmented structures, that is, a hard segment (made from isocyanate) and a soft segment (made from diols) [128]. A higher hard segment content will improve the hydrolytic
  • hydrolytic stability, and this is one of the primary methods used to produce biostable PUs. PUs are made biostable by increasing their crystallinity. PU remains valuable in biomedical applications because of its elastomeric characteristics, lubricity, superior abrasion resistance, and high tensile strength
  • biodegradable [124]. Degradation is limited in crystalline regions, while amorphous regions get degraded easily within PU. The molecular structure and composition of the polymer, its molecular weight, crystallinity, and the presence of cross-links and additives are a few elements that impact polymer degradation
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • varying equivalence ratios. The effects of flame equivalence ratio on the CNF morphology and crystallinity are then analyzed systematically. In the present study, a diffusion flame was used to check the stability of the flame at different flow rates, followed by establishing a premixed flat flame of LPG
  • three stainless steel inlet tubes for LPG, oxygen, and nitrogen was used to synthesize CNTs. TEM images revealed a 0.35 nm interplanar spacing, showing high crystallinity and a thin amorphous layer [11]. In a separate study, CNFs were synthesized using acetylene and plasma-enhanced chemical vapor
  • 1350 cm−1 for ID and 1592 cm−1 for IG. Generally, the formation of sp2-hybridized carbon atoms is often correlated to Raman spectra having G peaks at 1550–1600 cm−1, indicating the crystallinity. Similarly, a D peak at 1250–1450 cm−1 often correlates to defects and disorders of the sp2-hybridized
PDF
Album
Full Research Paper
Published 23 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • implanted with 1 × 1017 N2+·cm−2 at 30 keV using a current density of 4 µA·cm−2. Surface morphology and structural, optical, and electrical properties of the as-deposited and implanted Mo thin films have been systematically investigated. The crystallinity of Mo thin films is enhanced with increasing
  • thickness of the as-deposited films. This pattern persists with film thickness even after N2+ implantation. After implantation, crystallinity decreases relative to as-deposited films with the same nominal thickness. The AFM analysis reveals that RMS roughness increases with the thickness of Mo films
  • Mo films increased with increasing thickness. This trend of intensity with thickness remains in the nitrogen-implanted films. At lower thicknesses (150 and 200 nm), crystallinity is significantly reduced because of the extensive penetration of nitrogen ions, resulting in considerable distortion of
PDF
Album
Full Research Paper
Published 01 Apr 2025

Impact of adsorbate–substrate interaction on nanostructured thin films growth during low-pressure condensation

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2025, 16, 473–483, doi:10.3762/bjnano.16.36

Graphical Abstract
  • , crystallinity, and surface chemistry of the films is crucial for optimizing performance in these applications. In adsorption–desorption processes, where materials are deposited from the gas phase, experimental techniques enable the study the formation of clusters or islands of adsorbed molecules/atoms, which
PDF
Album
Full Research Paper
Published 28 Mar 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • they were fabricated using a low-temperature co-precipitation method. The resulting Ag@ZnO NRs had good optical properties, nanorod morphologies, and high crystallinity with no impurities. Technological advancements are leading people to use lightweight electronics and affordable sensors
PDF
Album
Full Research Paper
Published 26 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • and have a relatively low degree of crystallinity compared to the original target (Figure S4, Supporting Information File 1). The crystalline to amorphous transition is likely due to the development of stresses induced by ultrafast heating and cooling during PLAL [53]. However, both oxidation and
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • crystallinity, high transmittance, and high conductivity of the ZnTe film produced at 600 °C make it a suitable candidate for use as a buffer layer in solar cell applications. Keywords: bandgap; physical properties; RF sputtering; substrate temperature; ZnTe; Introduction The industrialization and burning of
  • Equation 4, and it decreases with increasing substrate temperature. The high value of crystallinity and low value of microstrain and dislocation density at 600 °C shows that good quality films can be fabricated at this temperature. Morphological investigation AFM was utilized to study the evolution of
  • at 400 °C). However, a significant increase in roughness from 3.12 nm at 500 °C to 9.28 nm at 600 °C was observed. These results are in correlation with our GXRD results, where a similar change in crystallinity was observed with substrate temperature [30]. The surface growth of films can be
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • ]. Additionally, PVA contributes to reducing the crystallinity of the chitosan structure [19]. Because of their unique and exceptional properties, nanofibrous membranes have become prominent materials for a wide range of applications [20]. Throughout their time of use, electrospun fibers are exposed to
  • control over fiber alignment and orientation [72]. Random fiber alignment and orientation, in addition to low crystallinity of electrospun structures, tend to result in poor mechanical strength [73]. To address the challenges of conventional electrospinning, researchers have explored alternative
  • contradictory observation, including reduced crystallinity as evidenced by the X-ray diffraction results and the presence of bound solvent detected through differential scanning calorimetry, which acts as plasticizer in the chitosan/PVA membrane and reduces the storage modulus. Viana et al. [138] conducted DMA
PDF
Album
Review
Published 26 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • its crystallinity, as previously reported by Nie and coauthors [67]. Furthermore, an increase of the intensity of the peak at 43° was also observed in addition to an occurrence of two new peaks at 2θ angles of 31° and 45°. The peak at 31° can be assigned to the (002) interlayer spacing in nanotubes
  • , while the other at 45° is related to changes in the crystallinity or arrangements in the nanotubes after irradiation. In the X-ray pattern of MWCNTs-G-COOH, the two characteristic peaks at 2θ angles of 26° and 43° were also present; however, the intensity of the peak at 26° decreased in the irradiated
PDF
Album
Full Research Paper
Published 19 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • MOF-based MMM system that perturb the crystallinity in the membrane will be discernable through XRD [121][129]. Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) are commonly used to supplement the chemical analysis of MOF-based MMMs [113][137][143]. EDX can
PDF
Album
Supp Info
Review
Published 12 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • similarly leads to the formation of TiO2. TiO2 is a well-known photocatalyst whose efficiency depends on a number of factors, including the crystalline phase, particle size, and degree of crystallinity. The most active phase of TiO2 is considered to be anatase. Its nanoparticles usually show higher
PDF
Album
Full Research Paper
Published 10 Feb 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • ablated in DW. Figure 6 shows nanofibres (Figure 6a) and NPs (Figure 6c) formed in DW, together with the corresponding SAED patterns (Figure 6b and Figure 6d, respectively). A difference can be seen between the crystallinity of the nanofibres and that of the NPs. Figure 6b shows that the nanofibres are
  • perfectly polycrystalline. In contrast, in Figure 6d, the presence of diffused rings for HfNPs-D indicates a mix of amorphous and polycrystalline phases in the NPs. The formation of HfO2 NPs in DW along with nanofibres and the observed crystallinity patterns can be explained by considering the decomposition
  • defects may be due to impurities in the lattice structure, possibly in the form of oxygen contamination, or imperfect crystallinity of the graphitic layer or the NPs themselves. Further detailed PL studies are essential to understand the origin of the observed emission peaks. Nanostructures Figure 10
PDF
Album
Full Research Paper
Published 18 Dec 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
  • , changes in the structural properties of Ni nanostructures due to ion bombardment have been reported in [15]. Interestingly, certain types of radiation ions have shown a positive effect on the crystal structure, leading to an increase in the degree of crystallinity after the austenitic annealing of defects
PDF
Album
Full Research Paper
Published 21 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • both liquid and solid lipids. The non-ideal crystalline structure of the NLCs reduces the crystallinity degree, thus offering enhanced drug loading capacity while preventing drug expulsion [103]. Because of their advantages, such as improved encapsulation of lipophilic drugs and increased brain
PDF
Album
Review
Published 12 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • is attributed to the CH2 scissoring mode and indicates close-packing of the methylene chains [42]. However, for CTAB-AgNS, CTAB-AuNS, CTAB-AuNR1, and CTAB-AuNR2, the peak splits into two parts with different intensities because of crystallinity loss in the hydrocarbon regions or the morphology of the
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • [24][25]. Besides, there was nearly no oxygen diffusion from the Fe3O4 film into the MgO layer, resulting in higher crystallinity and improved grain size as seen in the XRD patterns. Surface properties obtained from Figure 1 are summarized in Table 1. The crystal structures of the Fe3O4 samples on
PDF
Album
Full Research Paper
Published 14 Oct 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • ]. The properties of NPs, such as size, shape, crystallinity, productivity, and composition, can be influenced by several experimental parameters during synthesis [4][6][7][8][9][10]. The impact of laser parameters, such as pulse duration, wavelength, repetition rate, and fluence, and of the liquid
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • possess a higher level of crystallinity than the gold counterparts under the same conditions because of the stronger cohesive forces that drive the crystallization process. This observation is also supported by the simulated X-ray powder diffraction patterns of the nanomaterials. The larger NPs have a
  • for NPs is the consistency in their shape, surface characteristics, and crystallinity. Nevertheless, developing straightforward and widely applicable approaches to crystallize or melt NPs uniformly, with precise control, remains a significant challenge [25]. For instance, it has been shown that atomic
  • number density distribution, but they are not as sharp as in the case of the large NPs. Moreover, the height of the peaks is much smaller compared to those for the large NPs. This feature reflects a lower degree of crystallinity for the small relative to the large NPs and the fact that the nanomaterials
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • , respectively. The XRD diagram depicted in Figure 2c reveals the combination of peaks arising from both 2H-MoS2 and 2H-WS2, confirming the successful intermixing of the MoS2/WS2 composite. The sharp shape of the diffraction peaks suggests a very good crystallinity of the fabricated materials. The recurring
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024
Other Beilstein-Institut Open Science Activities