Search results

Search for "electronic structure" in Full Text gives 229 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • regarding its electronic structure, where emphasis is common for the study of the Ni 2p signal up to now. However, some discrepancies are still reported on the correct assignment of XPS features [45]. Additionally, less research has been done so far in the analysis of the Ni 3p signal, the study of which
  • corresponding CL spectrum. XPS measurements provide valuable information on the electronic structure and properties of the NiO samples, which strongly support the development of potential applications including gas sensors and optical resonators [43][47]. Conclusion SPEM is a synchrotron-based technique
PDF
Album
Review
Published 23 May 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • . Influence of ion irradiation on electronic structure from XANES spectra Figure 4a,b presents the XANES spectra at the O K and Zn L3,2 edges for the CZ900_Pris, CZ900_313O, and CZ900_313Ag thin films. The spectra for the O K and Zn L3,2 edge for the CZ900_Pris sample are reproduced from our previous
PDF
Album
Full Research Paper
Published 17 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • irradiated for shorter periods of time. The change in reflectivity depends on the change in the electronic structure as well as surface topography of the material. A change in electronic structure can be related to changes in chemical nature, impurity incorporation on the surface, and amorphization of the
PDF
Album
Full Research Paper
Published 31 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • electronic structure changes of the surface under reaction conditions. Variations in the root-mean-squared current signal verifies that the surface is undergoing oxidation. Furthermore, with an industrially relevant example of cobalt nanoparticles on an oxide support, we were able to image the catalyst
  • , capable of studying materials under industrially relevant conditions. Here we show current developments of the ReactorAFM/STM, implementing a qPlus sensor to add the ability of combining atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques to study the geometric and electronic
  • structure of materials under reaction conditions. We demonstrate this by imaging a Pd(100) single crystal at 450 K with combined AFM/STM. The surface is compared under ultrahigh vacuum and under 0.5 bar O2 pressure showing a notable increase in RMS current, which we attribute to oxidation. Also, we study
PDF
Album
Full Research Paper
Published 21 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • upon binding to the PEG–PCL NPs. As such, PEG–PCL NPs are colorless. Adding SDS further modifies this interaction, resulting in a red shift from blue to light blue. This color change is a direct consequence of the formation of the SDS–PEG–PCL NPs–dye complex, which alters the electronic structure of
PDF
Album
Full Research Paper
Published 20 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • to degrade antibiotics under the illumination of UV and visible light [83][84]. They also possess a distinctive electronic structure with the VB containing Bi 6s and O 2p orbitals [54]. This distinctive configuration results in a more pronounced absorption edge in the visible light spectrum. The
  • 7,7,8,8-tetracyanoquinodimethane (TCNQ) to enhance the energy band and electronic structure of g-C3N4. The pefloxacin degradation efficiency of the g-C3N4/TCNQ catalytic system was four times higher than that of pristine g-C3N4. By combining thiourea with 3-aminopyridine, researchers modified the
PDF
Album
Review
Published 25 Feb 2025

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • surface effects dependent on the surface-to-volume ratio, which directly influences the electronic structure and the crystal structure symmetry. Thus, the study and fabrication of nanomaterials not only aim at exploring novel approaches of quantum physics, but also at realizing new multifunctional
PDF
Album
Full Research Paper
Published 11 Nov 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • 243.22 Å2, were modified. Also, after the introduction of the polar group, the RBC varied from 1 to 10. The fullerene derivative C60–COOH was expected to modify the electronic structure of the composed systems. In consequence, the energy of the HOMO of the complexes was recomputed for the globally
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • bright extensions at the side of the GNR also associated with darker regions of the LCPD of the GNR. The electronic states of kinks in GNRs have been studied on a narrower type of GNR in [39]. Only small modifications of their electronic structure have been found. Here, we show that small structural
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Can neutral clusters: a two-step G0W0 and DFT benchmark

  • Sunila Bakhsh,
  • Sameen Aslam,
  • Muhammad Khalid,
  • Muhammad Sohail,
  • Sundas Zafar,
  • Sumayya Abdul Wadood,
  • Kareem Morsy and
  • Muhammad Aamir Iqbal

Beilstein J. Nanotechnol. 2024, 15, 1010–1016, doi:10.3762/bjnano.15.82

Graphical Abstract
  • small Ca clusters of up to 20 atoms, the structure, energies, and electronic structure were studied within the all-electron DFT approach. Our work aims to present the intricate characteristics of small Ca clusters by employing the DFT and state-of-the-art G0W0 approximation, which was recently used to
  • a higher abundance, which suggests they should be chemically more stable. In summary, predicting the ionization potentials adds to our understanding of the electronic structure and energetics of the calcium clusters. This benchmark may provide useful insights for future exploration of size-dependent
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • incorporating the electronic structure in the model, that is, by using the electron configuration of the elements (e.g., by using electron configuration fingerprints) [32]. In this way, the atomic orbitals can be easily represented and used to estimate the molecular/crystal orbitals in the NM without requiring
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • structure near the grain boundaries. Because of their electronic structure grain boundaries can also trap carriers. These phenomena may account for the changes in the dC/dV signal observed at the corresponding locations. The greatest variation of the dC/dV signal was recorded for the 3× sample. Analyzing
  • a lower signal, which means that the electrical properties of some grains had changed. These inhomogeneities may be caused by various factors. One is the effects occurring at grain boundaries or structural defects in the boundaries. The defects disrupt the crystalline order and affect the electronic
PDF
Album
Full Research Paper
Published 24 Jun 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • slight MB adsorption and decolourisation. The combination of GQDs and CoFe2O4 improves the decolourisation capacity significantly. Stacking CoFe2O4 crystals onto GQDs sheets not only prevents agglomeration but also creates heterojunction contacts or intermediate steps in the electronic structure. These
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • inversion occurs (top inset to Figure 1a), and mounds (valleys) appear bright (dark). A similar contrast inversion was previously reported for different tunneling voltages [42] and associated with the specific electronic structure of graphene on Ir(111) [45]. In the present experiments, the contrast
  • increased tip–graphene hybridization compared to the far tunneling range, which may entail a modification of the graphene electronic structure or enhance the contribution of substrate states to the junction current [46]. The mounds and adjacent valleys of the moiré superstructure are characterized by
  • defects appear as depressions with no identifiable interior structure. Therefore, they may be interpreted as graphene vacancy sites, that is, as sites with missing C atoms. As shown by the spectra of dI/dV for the two defect types (Figure 1d,e) the electronic structure differs. Atop the center of 1
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • effects are significant. The main aim of our study was to analyse the atomic ordering in different planar Au/Ge interfaces, characterize their energetic properties and present the accompanying changes in the electronic structure. To this end, the concepts of interfacial energy and of the work of
  • this heterostructure. Electronic structure Here we discuss electronic properties of the optimized defect-free Au/Ge interface structures investigated in the previous section, that is, the variants C and D of the Au-fcc(011)/Ge(001) interface and the Au-hcp(010)/Ge(111) heterostructure shown in Figure
  • displacements due to significant mismatch. Finally, analyzing the electronic properties, we demonstrate that Au/Ge systems have metallic character, but covalent-like bonding states between interfacial Ge and Au atoms are also present. Keywords: Au/Ge heterostructures; density functional theory; electronic
PDF
Album
Full Research Paper
Published 15 Nov 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • behaviour [86]. The metal ion can have different levels of impact on the emission depending on the electronic structure of the metal and the relative energy of the metal and linker orbitals. To develop luminescent MOFs, a variety of transition metals have also been combined with different ligands. Note that
PDF
Album
Review
Published 01 Jun 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • expected to pave the way for further functional nanostructures. In organic molecules and materials, the electronic structure and physical properties can be modified by replacing carbon with silicon. For example, silicon-substituted graphene-based materials exhibit exotic properties. However, it is
  • -workers used 1,4,5,8-tetrabromonaphthalene as a molecular precursor and sequential dehalogenation reactions under mild conditions to synthesize very thin (five carbon atoms wide) armchair graphene nanoribbons on a Au(111) surface [122]. The spatial distribution of the electronic structure and other
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • , Eonset: 1.34 V). Thus, the presence of both nickel in the oxidation state 3+ and the LDH structure results in a more efficient OER reaction. XAS analysis indicated the change in the electronic structure of the catalysts after the addition of GO (Figure 3). The analysis showed that the electronic
  • structure around nickel and iron was changed, which may be associated with interactions between NiFe or CoNiFe and GO (carbon domains). Something similar was observed in the case of the addition of N-doped nanocarbon to NiFe [16]. To summarize, the disturbed morphology and the change in the electronic
  • structure of CoNiFe after the addition of GO could result in a less attractive OER catalytic activity of this material compared to CoNiFe alone or NiFe-GO. Further OER studies on NiFe-GO showed that, apart from the desirable morphology and structure, each of the materials forming the catalyst has a specific
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • (QDs) of nanometer scale, the CQD edges influence the electronic structure of the conjugated sp2 domains [35][36]. Figure 2 shows FTIR, UV–vis and PL spectra of CQDs/PU composite samples. It is obvious from Figure 2a that there are some additional peaks in the CQDs/PU FTIR spectrum compared to that of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • include a metal–organic interface. At this interface, it is important to be able to modify the band structure to optimize the efficiency of a device [1]. One of the most successful methods to change the electronic structure of a molecular semiconductor device is to add a second molecular species either at
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • electronic structure of nanotubes. To gain insights into the correlation between SWCNT diameter and the adsorption of riboflavin, we performed single-step chirality enrichment of SWCNT dispersions with various diameter distributions: CoMoCat SWCNTs with a mean diameter 0.81 nm [24] and Tuball nanotubes with
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • function by utilizing the Tauc plot mentioned in Equation 3. The obtained values were depicted in Figure 5a–e. The enhanced light absorption properties could be attributed to the grey/black colour of MBN and enhanced charge transfer attained due to the change in the electronic structure through the
  • changes in the electronic structure by the formation of C–B and C–N moieties. This also led to the delocalization of electrons and accumulation of additional electrons from the graphitic carbon leading to an increase in charge carrier density within MBN-80. The removal of MB and phenol demonstrated LED
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • are just van der Waals forces, which are weak [46]. Metal oxides such as TiO2 only have the O 2p orbital in their VB. In contrast , Bi-based oxide materials have an electronic structure in which O 2p and Bi 6s orbitals are paired in the VB. The bandgap of the semiconductor may be reduced to 3.0 eV
  • better degradation efficiency for, respectively, BPA and ciprofloxacin than pristine Bi3O4Cl. This study offers fresh perspectives on photocatalyst design and underlines the importance of electronic structure modification in catalytic activity adjustment. Self-doping is a novel approach for introducing
PDF
Album
Review
Published 11 Nov 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • CDs, the solubility and QY can be improved. The size of CDs and chemical functionality present on their surface can be discreetly tuned to change the electronic structure for their luminous features. Various molecular precursors have been used earlier for the production of CDs, including ethylene
  • to attract greater attention since it can produce novel electronic structures. The electronic structure of CDs can be modified to produce n-type or p-type carriers by adding atomic impurities, such as nitrogen, boron, sulfur, or phosphorus. The QY of CDs could also be considerably enhanced by
  • the electronic structure of CDs, N,S-CDs have drawn more interest in recent years. Li et al. reported a simple and economical one-pot hydrothermal carbonization route to prepare N,S-CDs by using ginkgo leaves as a natural precursor. XPS results demonstrated that the reported CDs were having elemental
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • , respectively [41]. In recent years, artificial Z-scheme heterojunction catalysts have generated extensive interest since its special electronic structure not only promotes separation of electron–hole pairs but also remains with high redox capacity [42]. Therefore, the photocatalytic activity of MIL101(Fe) can
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022
Other Beilstein-Institut Open Science Activities