Search results

Search for "hydrogel" in Full Text gives 64 result(s) in Beilstein Journal of Nanotechnology.

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • assessed with a similar approach in a newly designed synthetic mucus hydrogel barrier system. The authors used differently sized polystyrene nanoparticles with polyethylene glycol (PEG) modifications. PEGylated nanoparticles exhibited better penetration than non-PEGylated formulations, regardless of the
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • photothermal gel, composed of Au nanorods, geraniol, chitosan, and the gene-targeted drug DC_AC50 can be activated by NIR light. Photothermal activation softens the hydrogel composed of geraniol and chitosan, controlling drug release and facilitating PTT at moderate temperatures, thus yielding exceptional anti
  • heats the photothermal nanomaterials embedded in these hydrogels, causing them to soften reversibly and release the encapsulated drug. The rate of drug release can be finely tuned by adjusting the concentration of the hydrogel and photothermal nanomaterial, as well as the irradiation conditions [132
  • inspiration from lollipops, Wang et al. developed a multilayered sodium alginate–chitosan hydrogel sphere drug delivery system, which uses ZnO-modified biocarbon (ZnO-BC) to enhance the photothermal conversion performance [70]. The hydrogel ball is embedded under the conjunctiva through surgery. ZnO-BC can
PDF
Album
Review
Published 17 Feb 2025

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • the mucilage envelope, primarily in the context of its structure and physical properties, as well as biological functions associated with these properties. Keywords: adhesion; cellulose; friction; hydrogel; mucilage envelope; seeds; Introduction The definition of hydrogels describes them as
  • hydrophilic, three-dimensional (3D), polymeric networks able to absorb huge amounts of water [1][2][3]. This term refers perfectly to the mucilage envelope produced by many fruits and seeds (diaspores) of diverse plant taxa [4][5][6][7][8][9]. Mucilage is considered as a natural hydrogel and shares specific
  • proper characterisation of their micro- and nanostructures. In the last years, SEM visualisation, combined with the critical point drying (CPD) procedure, has been widely used in nanostructural studies of diverse hydrogel-like samples, containing cellulose fibrils, or biofilms [7][40][41]. The CPD method
PDF
Album
Review
Published 13 Dec 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • . Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties
  • indicates that it belongs to the hydrogel family and is insoluble in water. Sodium alginate is an odorless, tasteless powder that can be white or yellowish. Alginate is a linear polymer composed of ᴅ-mannuronic acid (M) and ʟ-guluronic acid (G) residues [28]. Alginate can be an effective absorbent and
  • gel structure. As a result, the viscosity and other mechanical qualities of alginate can be enhanced, allowing for the formation of a hydrogel. The attractive properties of alginate include low cost, abundance, biocompatibility, biodegradability, antibacterial activity, non-toxicity, and the ease to
PDF
Album
Review
Published 22 Aug 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • hydrogel beads attained up to ≈17.2, ≈17.2, and ≈15.7 °C, respectively. On the other hand, gold nanorods after incorporation into k-CG did not yield much photothermal response as compared to that of AuNMs. The results showed a promising platform to utilize nanomakura particles along with kappa-carrageenan
  • hydrogels for enabling usage on nanophotonic, photothermal, and bio-imaging applications. Keywords: anisotropy; hydrogel; kappa-carrageenan; metal nanoparticles; nanoarchitectonics; nanomakura; photothermal properties; surfactants; Introduction Nanoarchitectonics is the fabrication of functional material
  • aspiring venture of soft intelligent materials [19]. Soft intelligent materials are primarily hydrogel materials that are stimuli responsive. A recent study showed the use of hydrogels by incorporating gold nanorods for the development of thermo-responsive actuators [20]. The photothermal conversion of
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • delivery but also enhances stability and biocompatibility. Recently, Shang et al. used a Au/Cu1.6O/P–C3N5/Arg@HA nanocomposite hydrogel spray coupled with ultrasound for diabetic wound healing (Figure 4) [162]. This nanocomposite spray exhibited five types of enzyme-like activities, that is, CAT-, SOD
PDF
Album
Review
Published 12 Apr 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • -stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel
  • composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials
  • were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • with a model hydrogel that there is a higher penetration for more deformable extracellular vesicles from mouse mesenchymal stromal cells [37]. A second study, from Yu et al., shows rigidity-dependent penetration of lipid NPs in the mucus layer of rat intestinal mucus. Liposomes were either hollow or
  • surface modification, leading to a prolonged pulmonary retention of dexamethasone-loaded nanoparticulate drug carriers for the treatment of acute pulmonary inflammation [39]. This is in accordance with a study from Zheng et al. where crosslinked insulin-loaded hydrogel zwitterionic nanoparticles with
  • . Nanoparticles often show high accumulation in the liver, where particles are cleared by the reticuloendothelial system (RES), and in the spleen due to its filtering function. Softer hydrogel nanoparticles composed of poly(carboxybetaine) [13] as well as poly(ethylene glycol) diacrylate (PEGDA) [28] showed
PDF
Album
Perspective
Published 23 Nov 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • with hydrogel. It harnesses the energy generated from bodily movements and utilizes it to create an electric field between the friction patch and the surrounding body tissues, thereby promoting the expedited healing of wounds. Poly(vinylidene fluoride–trifluoroethylene) (P(VDF-TrFE)) is a piezoelectric
  • energy harvesting [15]. Applying machine learning classification algorithms in the domain of human physiological signal detection is presently a prominent area of research. A notable study by R. Guo et al. [16] successfully integrated deep learning techniques with frictional hydrogel sensors to achieve
PDF
Album
Full Research Paper
Published 31 Jul 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • animal dermis and ensures its long-term applicability for actual solar steam generation [42]. In 2018, Yin et al. reported a poly(ethylene glycol) diacrylate (PEGDA) and PANI-based photothermal double-network hydrogel called p-PEGDA-PANI [35]. Porous PEGDA (p-PEGDA) hydrogels were obtained by a facile
  • spectrum (Figure 7b). The average absorbance (weighted by the AM1.5G solar spectrum) of the p-PEGDA hydrogel from 200–2500 nm was about 75.5%, whereas that of solid PEGDA is only 32.6%. The higher absorption capacity of p-PEGDA is due to its rough and porous surface structure, which promotes multiple
  • scattering. After crosslinking PANI, the porous hydrogel sample exhibited a broader and stronger absorption (98.5%) than the pure PEGDA sample, especially in the visible and near-infrared regions. Polydopamine: Polydopamine (PDA) has shown great potential in the field of solar-driven desalination due to its
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • and Gong discuss the organization of gels [103]. Specifically, they outline a unique anisotropic hydrogel consisting of uniaxially aligned lamellar bilayers in an amorphous gel matrix. This gel organization exhibits a beautiful structural color that is sensitive to mechanical and chemical stimuli. The
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • , this method is less affected by drug resistance and side-effects. A hydrogel was prepared by using both the electrostatic self-assembly between graphene oxide and a quaternized polymer and the formation of a pseudopolyrotaxane between α-CyD and poly(ethylene glycol) monomethyl ether (many α-CyD
  • molecules were threaded into the polymer chains) [87]. NIR light (808 nm) was absorbed by graphene oxide and converted into heat for photothermal therapy. At the same time, the heat induces the gel–sol transition of the hydrogel to release the encapsulated drug which add to the photothermal effect for
  • therapy. Even NIR-II light (1000–1400 nm) is usable. In Figure 8, poly(ethylene glycol) chains (green) were tethered through hydrogen bondings to poly(N-phenylglycine) (yellow), which serves as the NIR-II absorber [88]. Upon the addition of α-CyDs, a hydrogel was formed through polyrotaxane formation of
PDF
Album
Review
Published 09 Feb 2023

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • ) [130], and poly(lactic-co-glycolic)acid (PLGA) [131] are widely investigated as microneedle materials. Among them, there are hydrogel-forming agents swelling upon the contact with interstitial fluid in the skin during microneedle application. These polymers include poly(ethylene glycol) diacrylate
  • piercing the tissues is mentioned. Some of the polymers employed in the manufacturing process are hygroscopic, which can also decrease the physical stability of the final product [143]. Other polymer-based microneedles are hydrogel-forming systems, which are obtained with the use of hydrophilic substance
  • utilized not only as drug delivery systems but also as minimally invasive diagnostic tools [145][146]. The advantages of hydrogel-forming systems include relatively high drug-loading capacity and the possibility to modify the drug release rate with respect to the individual needs, which is usually achieved
PDF
Album
Review
Published 24 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • /chitosan/glycerophosphate/silk fibroin were fabricated for bone regeneration applications. Further, in vitro biological assays performed with MC3T3-E1 cells prove the osteogenic properties of the fabricated hydrogel. In addition, in situ experiments were conducted on rat calvarial bone defects for eight
  • min [68] (Figure 4). Cancian et al. (2016) developed a novel bioactive scaffold based on a thermosensitive chitosan hydrogel. In this work, carbon nanotubes were used to stabilise the chitosan hydrogel, which offers mechanical strength and controlled release of protein therapeutics. The bioactivity of
  • incubation with artificial blood plasma, hydroxyapatite bone minerals were formed. The cell survival and cell adhesion of composite-containing MG-63 cells exhibit improved biocompatibility [62]. Also, reduced graphene oxide combined with chitosan was fabricated into a hydrogel by using a tannic acid cross
PDF
Review
Published 29 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • relevant temperatures. Performing the measurements at body temperature or 37 °C can have a drastic effect on the resulting Young's modulus [4]. For hydrogel NPs, the influence of the experimental conditions might be even more pronounced due to the high water content [5]. The suitability of a drug carrier
  • evaluated during the formulation development and tuned according to the requirements of the target. Gelatin nanoparticles (GNPs) were introduced as potential biocompatible and biodegradable drug carrier system [10][11]. This hydrogel nanoparticulate carrier system shows great potential for the delivery of
PDF
Album
Full Research Paper
Published 16 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • increased by using these materials as positive electrodes. The networks can also help to accelerate ion transfer in coordination polymers. When the Prussian blue nanocrystals contain a double-network PAAm/PAMPS hydrogel, the uptake of Cs+ ions from solution could be as high as 397 mg·g−1, which is very
PDF
Album
Review
Published 12 Aug 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • classified into solid, hollow, coated, hydrogel-forming, and dissolvable types, which depending on the specific medical applications [12][13], are fabricated using silicon, metal, ceramic, silica glass, carbohydrate, and polymers [7][14]. In recent years, polymeric MNs have gained a lot of interest due to
PDF
Album
Full Research Paper
Published 08 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • properties of the cells themselves has not been discussed in detail. In this study, polyacrylamide hydrogel substrates with different stiffness values (3–35 kPa) were prepared to simulate the stiffness of normal and prostate cancer tissues [21][22][23]. Combined with confocal microscopic imaging techniques
  • cells in different external environments, polyacrylamide hydrogel substrates with adjustable stiffness were prepared by controlling the concentration of acrylamide and bisacrylamide on these gels (Figure 1). The stiffness values were 3 kPa (soft group) and 35 kPa (stiff group), representing normal
  • prostate tissue and tumour tissue, respectively, and 19 kPa, an intermediate transition group. We first tested the toxicity of the hydrogel substrates to the cells and found that all three types of substrates were nontoxic to the cells and the cells were mostly active after 48 h of incubation (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • , soft hydrogel nanoparticles, have been proven efficient carriers of proteins or peptides preserving the biological activity of their payload [12][13][14]. For instance, Ozawa et al. introduced a nanogel from highly branched cyclic dextrin derivatives that trapped fluorescein isothiocyanate-labeled
  • insulin, which was continuously released over 12 h [15]. Hirakura et al. fabricated a cholesteryl group-bearing pullulan nanogel serving as a reservoir of three different proteins, glucagon-like peptide 1, insulin, and erythropoietin incorporated in hyaluronan hydrogel [16]. Morimoto et al. prepared an
  • presence of SPAN 80 [24]. TEM microscopy analysis has revealed a slight narrowing of the particle size distribution with Đ = 1.43. PHEG-Tyr nanogel is composed of two families of compact hydrogel spheres with Dn = 111 and 19 nm, and Dw = 159 and 24 nm, respectively. Biocompatible zwitterionic Nα-Lys-NG was
PDF
Album
Full Research Paper
Published 22 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • layer of Parafilm, which means that the microneedles can reach 130 µm, as shown in Figure 5 and Table 1. However, CIP_MN2 showed significantly fewer perforations compared to the CIP_MN1; the first layer of Parafilm was perforated only by 85 needles. Although PVA hydrogel has shown satisfactory
  • mechanical properties, many studies have shown better mechanical properties of PVA/PVP hydrogels [39][40][41]. In one study, the tensile strength of PVA hydrogel was increased by 133% after blending with less than 2% w/w PVP [42]. This is due to the formation of relatively strong hydrogen bonds between the
  • hydroxy groups of PVA and the carbonyl groups of PVP in an intertwined network [43]. Therefore, we assumed that CIP_MN1 composed of PVA/PVP hydrogel had greater mechanical strength than CIP_MN2 composed of PVA and penetrated the Parafilm more efficiently. Overall, the results we obtained signify the
PDF
Album
Full Research Paper
Published 15 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • matrices for cell transplantation in the late 1980s [18], there have been numerous developments in the design and fabrication of bioinspired and smart biomaterials with improved potential of TE as a regenerative medicine approach. The development of hydrogel-based scaffolds for regenerative medicine
  • . Micro- and nanostructures including microspheres, NPs, nanofibers, nanotubes, and nanofilms have been designed to construct new scaffolds and or incorporated into the hydrogel network to provide a controlled release or enhanced mechanical characteristics. Many of these substructures are widely used for
  • incorporated them into an HA hydrogel. The structures showed superior mechanical properties and longer release of growth factor for more than six days compared to both a hydrogel scaffold loaded directly with TGF-β3 and one with non-coated microspheres. Incorporation of the TGF-β3 loaded microsphere into an
PDF
Album
Review
Published 11 Apr 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • strategy can provide different functions for amino acid assembly. Fmoc-phenylalanine and Fmoc-leucine were co-assembled, with Fmoc-phenylalanine as the hydrocoagulant and Fmoc-leucine as the antimicrobial unit. The resulting hydrogel selectively killed Staphylococcus aureus by breaking the cell wall and
  • membrane and had good biocompatibility. After 20 h of incubation, approximately 95% of Staphylococcus aureus bacterial proliferation was effectively inhibited [46]. A novel supramolecular self-assembled hydrogel was prepared by mixing Fmoc-ʟ-phenylalanine (Fmoc-ʟ-Phe) with oligo(thiophene ethynylene)-ᴅ
  • with drugs to play different therapeutic effects as drug delivery carriers. The encapsulation of the antibiotic aztreonam (ATZ) in the Fmoc-phenylalanine (Fmoc-F) hydrogel expands the antibacterial range of Fmoc-F, which can continuously release ATZ and Fmoc-F in the wound [48]. The AZT encapsulated
PDF
Album
Review
Published 12 Oct 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • ) [15]. Doses sustained over time could be achieved using slowly dissolving structures or through stepwise bolus using multiple patches. Incorporation of hydrogel reservoirs in microneedle patches is a plausible alternative to conventional drug pump delivery systems and there has been some relevant work
  • on hydrogel-forming polymer microneedles [16][17][18]. Microneedle patch technology has the potential to overcome the challenges involved in mass vaccination against COVID-19 across the world and has already shown promising achievements in delivering lyophilised or liquid formulation-based vaccines
  • example using porous silicon, is one possible solution [39][40][41]. However, a hydrogel reservoir which could be much larger than the microneedle array seems a better option, since it can swell to achieve greater load which can be released under finger pressure in combination with microfluidic
PDF
Album
Review
Published 13 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021
Other Beilstein-Institut Open Science Activities