Search results

Search for "hydroxyapatite" in Full Text gives 48 result(s) in Beilstein Journal of Nanotechnology.

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • , and an increase in surface roughness, which reduced the water contact angle, without altering the bulk properties of the material. Similar observations of improved mechanical strength of plasma-treated chitosan/PVA/hydroxyapatite were reported using DBD plasma air, which is considered more cost
PDF
Album
Review
Published 26 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • ][23]. Modern research endeavors are marked by a range of pioneering developments regarding hydroxyapatite (HA), aimed at creating highly effective HA nanoparticles customized for the use as carrier materials. These nanoparticles are undergoing thorough examination as carriers for rhizobacteria
  • the synthesized nHA is given in Figure 2. Figure 2 shows that the XRD pattern of nHA aligns with the ICSD #157481 standard (Figure 1) and the P63/m space group. This alignment confirms the successful synthesis of hydroxyapatite. Notably, the image highlights the characteristic (211) peak of HA at 2θ
  • applications. The nHA carrier is hydroxyapatite (Ca10(PO4)6(OH)2) in powder form, comprising the elements calcium, phosphorous, oxygen, and hydrogen. These elements provide nutrients that support the viability of rhizobacteria. Water within the carrier also plays a crucial role in maintaining the viability of
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
PDF
Album
Review
Published 22 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • Young’s modulus of 100% and 156%, reaching 60 MPa and 0.52 GPa, respectively, after coating. CNTs are generally used to reinforce the bulk of composite-based implants [136] or added to polymeric films [135]. Interestingly, they can be mixed with hydroxyapatite in order to magnify the compatibility with
  • spectroscopy. The authors observed a drastically reduction of passivation in the coated samples compared with the original specimens. Similar results can be achieved by using CNT-containing polymeric layers [163] or CNT-based hydroxyapatite coatings [164][165]. Remarkably, neat CNTs coatings are not the best
PDF
Album
Review
Published 16 Aug 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • bone tissue are 60% organic matrix, 30% mineralized inorganic matrix, and 10% water. About 90–95% of the organic matrix is type-I collagen, which is the main component of connective tissue. About 70% of the mineralized part of the bone that forms the inorganic matrix component is hydroxyapatite
  • . Hydroxyapatite affects hardness and resistance of bone tissue. Mechanically, the organic part provides flexibility of the bone tissue, while the inorganic part ensures the hardness and a strong and solid structure. Therefore, calcification of artificial bone grafts is essential for the supply of hard bone tissue
PDF
Album
Review
Published 25 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • )/hydroxyapatite in orthopedics [1][2]. Biocompatible polymers are widely used in biomedical fields, such as stents, drug delivery systems in cancer therapy, bone repair, dentistry, joint prostheses, and tissue engineering [2][3][4][5][6]. Polymers have several advantageous properties for these applications as
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent

  • Horacio Emanuel Jerez,
  • Yamila Roxana Simioni,
  • Kajal Ghosal,
  • Maria Jose Morilla and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 517–534, doi:10.3762/bjnano.15.46

Graphical Abstract
  • -1,1-bisphosphonic acid) is a nitrogenous bisphosphonate with high affinity for the bone matrix of hydroxyapatite, chelating capacity of divalent cations, and anti-osteoclast activity, widely used in clinical settings as an anti-resorptive agent in osteoporosis [7][8][9]. ALN is known to reduce
  • ALN on endothelial cells. This is important because the access of ALN in therapeutically realistic concentrations to the inflamed endothelium is limited to microenvironments exhibiting the abnormal presence of hydroxyapatite in the vessel structure. ALN associates with great affinity to this mineral
  • -inflammatory effects of ALN only occur at micromolar concentrations [12]. Such high concentrations, however, may hardly be achieved in blood because of the low bioavailability and high affinity of ALN to the hydroxyapatite matrix. At high oral dosages, ALN causes severe irritation of the upper gastrointestinal
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • associated with elevated ZnO NP concentrations [18]. Hence, this has prompted research into phytotoxic effects of Zn on crops due to the large input of ZnO NPs to the soil from anthropogenic sources [15]. The previously published work on the effect of macronutrients (i.e., hydroxyapatite nanoparticles (HANPs
  • work of Mr. N.H. Madanayake, NMA and NS on the impact of hydroxyapatite nanoparticles on Raphanus sativus seedling growth and plant metabolites has influenced the current study. The graphics of the graphical abstract were created using the software IbisPaintX and designed by Adobe Illustrator. This
PDF
Album
Full Research Paper
Published 23 Jan 2024

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , Romania Nicolae Testemitanu State University of Medicine and Pharmacy, 165 Stefan cel Mare si Sfant ave., MD-2004, Chisinau, Republic of Moldova 10.3762/bjnano.13.123 Abstract This research work focuses on the fabrication and study of a series of nanocomposites consisting of two types of hydroxyapatite
  • (HA), obtained by precipitate (HAP) and sol–gel (HAG) methods, and a boro-silico-phosphate bioglass. The microstructure and chemical, mechanical, and biological properties as functions of three factors, namely (i) the type of hydroxyapatite, (ii) glass content, and (iii) sintering temperature, were
  • drawbacks. An ideal biomaterial to replace the bone tissue must integrate in the surrounding bone or soft tissue by stimulating osteoinduction and octeoconduction [1] at their interface in physiologic environment. Synthetic hydroxyapatite (HA), Ca10(PO4)6(OH)2, although being very similar to the mineral
PDF
Full Research Paper
Published 12 Dec 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • ], calcium sulfate and gelatin [135], gelatin and hydroxyapatite [136], and PLGA microparticles combined with PLA [137] are available in the scientific literature. Taking into consideration the shape and geometry of microneedles, they can be categorized as pyramids, cones, arrowheads, cylinders, bullets
PDF
Album
Review
Published 24 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • ]. Review Bone structure Bone is a hard tissue that contains different kinds of cells including osteoblasts, osteocytes, and osteoclasts (Figure 1) [26]. The inorganic hydroxyapatite and organic type I collagen components are vital to bone tissue. The bone biomineralisation activities are formed by
  • nanosized hydroxyapatite crystals with connective collagen fibrils [27]. The bone possesses a unique combination of strength and stiffness, and it has excellent compressive strength and tensile strength due to the attribution of deep nanostructures of inorganic and organic components. Human bones are
  • carbon-based materials have been tested. Biomaterials for bone graft substitutes Hydroxyapatite and its composites have been widely utilized/studied biomaterials for bone tissue engineering [35][36]. Hydroxyapatite with several polymeric materials has been used to mimic the natural function of the bone
PDF
Review
Published 29 Sep 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • increased with the decrease of initial concentration of the 125I-radiolabeled BSA. The inverse effect was found when loading BSA onto poly(acrylic acid) and hybrid hydroxyapatite nanoparticles with chitosan/polyacrylic acid nanogels, where the loading was predominantly influenced by electrostatic
PDF
Album
Full Research Paper
Published 22 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • alcohol) (PVA), nanoscale hydroxyapatite, and magnetic NPs (Fe2O3) has also shown that the incorporation of NPs enhances the mechanical properties of the scaffold and regulates the behavior of cells seeded in the nanocomposites [61]. A magnetic hydrogel-based nanocomposite can provide a promising scaffold
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • surface chemistry play a significant role in the interaction between proteins and cells and the material surface. It has also been shown that hydroxyapatite and calcium phosphate mimics the chemical composition of natural bone. Thus, with the use of these components in the coating, TiO2 implants have
  • tissue, the material was covered with a nanoscale hydroxyapatite (nHA) coating and its efficacy was compared to the material without nHA coating. Interestingly, both materials showed antibacterial properties against Staphylococcus aureus, but the nHA-coated material was found to be more biocompatible [62
  • contributes to hydroxyapatite (HA) formation and bone matrix mineralization [71]. Likewise, nanophase titania/poly(lactic-co-glycolic acid) (PLGA) composites have been designed that showed greater osteoblast adhesion compared to plain PLGA [72]. In vivo tissue engineering (TE) holds tremendous potential in
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • fibers of a polyhydroxybutyrate (PHB)/hydroxyapatite (HAp) composite. 3.2 Solution parameters 3.2.1 Solution concentration. It has been observed that there is a direct proportionality between the solution concentration and aspect ratio and fiber diameter. Sadat-Shojai et al. reported that when the
PDF
Album
Review
Published 31 Jan 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • carrageenan gel retaining the antibacterial property [85]. A study based on an injectable composite of carrageenan and nanoscale hydroxyapatite as an injectable bone substitute showed good adhesion properties with no cytotoxicity in vitro, as shown in Figure 6 [116]. The nanocomposite also exhibited
  • International Licence, http://creativecommons.org/licenses/by/4.0/. (A) A κ-carrageenan-stabilized hydroxyapatite rod-shaped nanocomposite. (B) Antibacterial study using E. coli, S. aureus, B. subtilis, P. aeruginosa showing the bactericidal properties of the nanocomposite. (C) The nanocomposite shows
  • osteoblast cytotoxicity tests in cell lines (L02 and L929). Adapted from [116], J. I. González Ocampo et al., “Evaluation of cytotoxicity and antimicrobial activity of an injectable bone substitute of carrageenan and nano hydroxyapatite”, J. Biomed. Mater. Res. A., with permission from John Wiley and Sons
PDF
Album
Review
Published 18 Aug 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • , replacing the dialysate every 24 h. The product was extensively characterized. It was a citrate-coated 4.2 nm ceria [35]. Lanthanides (LN) resin (100 to 150 μm) was obtained from Eichrom Technologies LLC, Lisle, IL, 60532. Hydroxyapatite (Bio-Gel HTP, 10 to 90 μm) was obtained from Bio-Rad. Cerium was
  • chromatography, containing di(2-ethylhexyl) orthophosphoric acid as the metal complexing group, and hydroxyapatite (HTP) were studied. Initial experiments were conducted to verify their ability and capacity to complex ionic cerium. LN resin (7.5, 40, or 75 mg) was added to duplicate 15 mL tubes containing 10 mL
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • ] synthesized AgNPs using the hydrolytic sol–gel method at 400, 600, and 800 °C with particles with an average size of 20 nm and crystalline shape. The sol–gel technique can also be performed at lower temperatures as well. Jadalannagari et al. [143] synthesized silver-doped hydroxyapatite nanorods using the sol
PDF
Album
Review
Published 25 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • the development of mammalian tooth enamel [67][71]. Tooth enamel consists of hydroxyapatite crystals, which form needle-shaped nanocrystals of several micrometres length with a diameter below 100 nm. HIM revealed insight into the complex interactions between the enamel-forming cells, matrix proteins
PDF
Album
Review
Published 04 Jan 2021

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • sufficiently studied in cardiomyocytes. The aim of this study was to determine how hydroxyapatite (HAp) nanoparticles contribute to the delivery of plasmid DNA (pDNA) into cardiomyocytes. We fabricated HAp nanoparticles using the water-in-oil (W/O) emulsion method and used these nanoparticles as the delivery
  • . Furthermore, this HL-1 cell uptake was generated in response to HAp stimulation. Thus, HAp is a positive regulator of macropinocytosis in HL-1 cells and a good system for gene delivery in cardiomyocytes. Keywords: cardiomyocyte; endocytosis; gene delivery system; hydroxyapatite nanoparticles
  • advantages in using CaP for gene delivery, the transfection efficiency of CaP/DNA is relatively low according to various preparation parameters [10]. In particular, particle aggregation needs to be improved in order to reduce cellular uptake through the endocytic pathway. Hydroxyapatite (HAp, Ca10(PO4)6(OH)2
PDF
Album
Full Research Paper
Published 05 Nov 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • nontoxicity, worldwide availability and low production cost of cuttlefish bone products makes them an excellent calcium carbonate precursor for the fabrication of hydroxyapatite. In the present study, a novel oil-bath-mediated precipitation method was introduced for the synthesis of hydroxyapatite (Hap
  • ; cuttlefish bone; hard tissue treatment; hydroxyapatite; nanorods; Introduction Generally, the hard tissue of humans and animals, such as bone and teeth, are composed of natural hydroxyapatite (Hap), which is a bioactive ceramic material with high calcium phosphate concentration whereby the material can
  • and Materials standard F756-00. Generally, the addition of hydroxyapatite microcrystals with blood will lead to hemolysis via aggregation of erythrocytes and membrane damage induced by crystals [49]. Moreover, Wiessner et al. (1988) showed that the crystallinity of the Hap plays a crucial role in
PDF
Album
Full Research Paper
Published 04 Feb 2020

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • have also been discussed [12][14][15]. More recently, there have been a few reports discussing the use of luminescent Eu-loaded hydroxyapatite nanocrystals for rapid HeLa cancer cell imaging [9][11][16], or the nanostructure self‐assembly driven by amino acid coordination to increase the biological
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • applications [19]. Such biocompatible surfaces have not been widely adapted within use of ALD, although recent attempts have been reported for deposition of biocompatible hydroxyapatite thin films [20] and hydrophilic ALD-deposited alumina thin films [21], in addition to our prior work on titaminates [22], and
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

One-step nonhydrolytic sol–gel synthesis of mesoporous TiO2 phosphonate hybrid materials

  • Yanhui Wang,
  • P. Hubert Mutin and
  • Johan G. Alauzun

Beilstein J. Nanotechnol. 2019, 10, 356–362, doi:10.3762/bjnano.10.35

Graphical Abstract
  • transients were recorded. The 31P chemical shift was determined using an external reference, hydroxyapatite Ca10(PO4)6(OH)2, at 2.8 ppm (with respect to H3PO4, 85 wt % in water). 31P CP magic angle spinning solid-state NMR spectra of the hybrid materials produced by the reaction of octylphosphonate, Ti(OiPr
PDF
Album
Full Research Paper
Published 05 Feb 2019

Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation

  • Zahraa Shahin,
  • Hyewon Ji,
  • Rodica Chiriac,
  • Nadine Essayem,
  • Franck Rataboul and
  • Aude Demessence

Beilstein J. Nanotechnol. 2019, 10, 228–237, doi:10.3762/bjnano.10.21

Graphical Abstract
  • of gold-based materials [27][28][29][30][31]. In the literature, different gold thiolate clusters grafted on different supports were used to selectively oxidize benzyl alcohol. Thus, Au25(6-mercaptohexanoic)acid18@HAP (HAP – hydroxyapatite) was defunctionalized either by using tert-butyl
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019
Other Beilstein-Institut Open Science Activities