Search results

Search for "insects" in Full Text gives 69 result(s) in Beilstein Journal of Nanotechnology.

Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research

  • Benjamin Punz,
  • Maja Brajnik,
  • Joh Dokler,
  • Jaleesia D. Amos,
  • Litty Johnson,
  • Katie Reilly,
  • Anastasios G. Papadiamantis,
  • Amaia Green Etxabe,
  • Lee Walker,
  • Diego S. T. Martinez,
  • Steffi Friedrichs,
  • Klaus M. Weltring,
  • Nazende Günday-Türeli,
  • Claus Svendsen,
  • Christine Ogilvie Hendren,
  • Mark R. Wiesner,
  • Martin Himly,
  • Iseult Lynch and
  • Thomas E. Exner

Beilstein J. Nanotechnol. 2025, 16, 57–77, doi:10.3762/bjnano.16.7

Graphical Abstract
  • describe a material and its surrounding medium in mesocosm experiments while keeping the sequence of transformations intact (e.g., a material deposited in soil resulting in the material’s uptake by surrounding plants, which are then eaten by insects). Material transformations are tracked through connected
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2025

Bioinspired nanofilament coatings for scale reduction on steel

  • Siad Dahir Ali,
  • Mette Heidemann Rasmussen,
  • Jacopo Catalano,
  • Christian Husum Frederiksen and
  • Tobias Weidner

Beilstein J. Nanotechnol. 2025, 16, 25–34, doi:10.3762/bjnano.16.3

Graphical Abstract
  • : bioinspired materials; calcium carbonate; offshore assets; stainless-steel coating; super-hydrophobicity; Introduction Small animals, such as insects, springtails (Collembola), and other hexapods, have distinctly large surface-to-volume ratios. This characteristic imposes significant challenges in terms of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • interactions. It was observed that mucilage prevents diaspores from predation, because of its viscous character. Seeds with hydrated mucilage are very unwieldy for granivore insects (e.g., ants) collecting seeds [25][129]. Pan et al. [129] observed that workers of harvester ants Pogonomyrmex subdentatus were
  • granivore insects [25][130]. Another example of such sticky traps is described regarding false chinch bugs (Nysius raphanus) entrapped by flax seeds covered by the mucilage envelope. These insects stuck on the mucilage when it was dried out [25]. Roberts et al. [131] observed nematodes entrapped by Capsella
PDF
Album
Review
Published 13 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • for ways to control these insects, avoiding the use of conventional chemical insecticides that are proven to be toxic to nature. In the last years, there has been growing evidence for the potential of silver nanoparticles (AgNPs) to be ecologically benign alternatives to the commercially available
PDF
Album
Review
Published 04 Dec 2024

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • contributes to a deeper understanding of ultrablack biological materials and their potential applications in biomimetics. Keywords: animal coloration; biophotonics; Hymenoptera; insects; Mutillidae; superblack; surface; Introduction The phenomenon of highly absorptive colors, also known as ultrablack, has
  • velvet ants and insectivorous predators [29][30]. Observations indicate that while bufonid toads may initially prey on female velvet ants, they tend to avoid them in subsequent encounters [29][30]. Conversely, birds and lizards, which are known predators of defended insects such as bees and wasps
  • thermal implications of ultrablack colors compared to other velvet ants with non-ultrablack dark colors, but also the thermal properties of white setae. Another potential function of the sculptured cuticle is resistance to high forces. Velvet ants are known as “indestructible insects” not only because
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures
  • surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative
  • surfaces of insects are marvels of natural engineering, displaying a remarkable array of adaptations that enable them to thrive in diverse environments [1][2][3]. Insects have developed a variety of mechanisms to cope with the challenges posed by their habitats, from specialized structures for attachment
PDF
Album
Review
Published 05 Nov 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • particle removal efficiency in intact insects and in insects with ablated grooming devices. The grooming devices are constituted of long setae from which a concave cuticular lamina develops towards the medial side of the leg. Each seta shows a material gradient of resilin from its basal to the distal
  • , from vertebrates to arthropods, with early evolutionary origins (reviews in [1][2]). Despite the distant evolutionary relationship between vertebrates and insects, their grooming behaviors serve multiple and similar purposes, such as body cleaning and disease prevention, distribution of substances
  • across the body surface, maintenance of sensory organs, and displacement behavior in stressful conditions [3]. In insects, the chitinous exoskeleton, with the epidermis below it, forms the integumentary boundary between internal organs and the external environment. The exoskeleton can perform numerous
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • sign of ageing is the loss of locomotory functions due to neuronal disorders or tissue wear. Soft and pliable attachment pads on the tarsi of insects adapt to the substrate texture to maximize their real contact area and, thereby, generate attachment during locomotion. In the majority of stick insects
  • , adhesive microstructures covering those pads support attachment. Stick insects do not molt again after reaching the imaginal stage; hence, the cuticle of their pads is subject to continuous ageing. This study aims to quantify how attachment ability changes with age in the stick insect Sungaya aeta
  • area with the substrate. Keywords: adhesion; attachment pads; friction; locomotion; morphology; material properties; wear; Introduction Ageing inexorably affects most living organisms, does not exclude insects, and makes different organs or tissues susceptible to wear or fatigue of material [1
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • structures must not be internally active. Obviously, this excludes organisms’ slender body parts, such as elephant trunks, the legs of mammals and insects, and the cilia and flagella of eukaryotic microorganisms. As a side note, flagella of eukaryotic cells (e.g., algae, protists, and sperms) and prokaryotic
  • same phylogenetic class, order, family, genus, and species [8]. However, hair mass deviates slightly from isometry, and it appears that larger organisms are more “hairy”. First, the exponent for power-law fits increases with size, as evidenced by comparing the fits for cells and phages, insects
  • body, varying in size and structure. Figure 1B–D show examples of various hairs found in mammals, insects, and micro-algae, respectively. Depending on their location and configuration, hairs serve a multitude of functions that can contribute to an organism’s homeostasis. The diversity of their function
PDF
Album
Review
Published 06 Jun 2024

Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea)

  • Julian Thomas,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 612–630, doi:10.3762/bjnano.15.52

Graphical Abstract
  • Julian Thomas Stanislav N. Gorb Thies H. Buscher Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany 10.3762/bjnano.15.52 Abstract The mechanism by which insects achieve attachment and locomotion across diverse substrates has
  • long intrigued scientists, prompting extensive research on the functional morphology of attachment pads. In stick insects, attachment and locomotion are facilitated by two distinct types of smooth cuticular attachment pads: the primary adhesion force-generating arolium and the friction force-generating
  • ; Introduction Throughout their evolutionary timeline, insects evolved various surfaces interacting with the environment. These include friction-based adhesive organs, which are essential for locomotion by generating frictional and adhesive forces [1][2][3][4]. Two morphologically different friction-based
PDF
Album
Full Research Paper
Published 29 May 2024

Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 385–395, doi:10.3762/bjnano.15.35

Graphical Abstract
  • tested insects showed a strong reduction of the maximum traction force on all waxy plant surfaces compared to the reference experiment on glass (gl1). After beetles have walked on waxy plant substrates, their adhesive pads were contaminated with wax material, however, to different extents depending on
  • the plant species. The insects demonstrated significantly lower values of both the maximum traction force and the first peak of the traction force and needed significantly longer time to reach the maximum force value in the gl2 test than in the gl1 test. These effects were especially pronounced in
  • experimentally supports the contamination hypothesis. Keywords: adhesion; Chrysolina fastuosa; Chrysomelidae; Coleoptera; epicuticular wax projections; tenent setae; traction force; Introduction It has been shown in numerous experimental studies that insects possessing hairy adhesive pads (i.e., specialized
PDF
Album
Full Research Paper
Published 11 Apr 2024

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • significant income for producers and population [6]. The main problems for producers are pests and diseases that severely affect crops [7]. High densities of insects feeding on potatoes prior to flowering can result in a large number of unmarketable tubers [8]. Additionally, combined infestation with the
  • formulations, and reduce the amount of insecticide required for pest control [22]. Nanoparticles are known for their insecticidal properties; they interact with the cell membranes of the insects, causing the denaturation of organelles and enzymes, oxidative stress, and cell death [23][24]. Essential oils are
  • potential botanical sources for developing new insecticides [25]. Their active components act against pest species through toxicant and repellent effects, developmental and behavioral alterations, and induction of sterility or infertility of insects [26]. Technologies such as nanoformulations or
PDF
Album
Full Research Paper
Published 17 Nov 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • millennia. For instance, inspiration can come from insects [33][34], especially the approximately 100 species that have developed a preference for human hosts [35]. For example, mosquitos have an approximately 2 mm long proboscis that diverges into six stylets and easily penetrates skin [36][37], and there
PDF
Album
Perspective
Published 15 Aug 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • pest insects by reducing the frictional forces experienced when they walk on the leaves. This structure might also provide mechanical stability to the growing plant organs and has an impact on the wettability of the leaves. Using polymer replicas of adaxial leaf surfaces at various scales, the surface
  • frictional forces on both, freshly unrolled leaves as well as adult leaves. These results extend the understanding of the mechanisms used by plants to defend themselves against herbivorous insects by changes in the leaf morphology on the macro- and microscale. Li et al. [6], in the paper “Effect of sample
  • treatment on the elastic modulus of locust cuticle obtained by nanoindentation”, investigate the mechanical properties of the cuticle that builds the surface of insects and related groups of animals. The cuticle is one of the most abundant, but least studied biological composites. In their study, the
PDF
Album
Editorial
Published 03 Aug 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • insecticide is malathion, which kills insects such as fleas and ants that attack plants. Malathion has been detected so far using chromatography [4][5], colorimetry [6], and mass spectrometry [7], although these methods are complicated and time-consuming and require expensive equipment with specialized
PDF
Album
Full Research Paper
Published 09 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • these tips are also rather soft and flexible, similar to attachment hairs in insects showing high adhesion at the tips [58]; for in-depth reviews, see [59][60][61]. In contrast, the tips of the long setae did not emit blue signals. The simulation presented here takes into account the actual physical
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

The origin of black and white coloration of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae)

  • Manuela Rebora,
  • Gianandrea Salerno,
  • Silvana Piersanti,
  • Alexander Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 496–508, doi:10.3762/bjnano.14.41

Graphical Abstract
  • ; insects; nanostructure; scales; structural white; Introduction Body color (coloration) and light signals (bioluminescence) have a fundamental role in insect inter- and intra-specific visual communication allowing for species recognition, mating, prey capture, and predator avoidance [1]. Insect colours
  • used in the species determination [14][15]. Notwithstanding such scales are rather similar to those of butterfly wings [16], the mosquito scale nanostructures have not been deeply investigated so far regarding the structural colours they generate. Structural colours are common in insects [4] and have
  • 100 most invasive species in the world being an aggressive day-biting species. It is of high medical importance as a vector of chikungunya virus, dengue virus, and dirofilariasis [18]. Detailed studies regarding the optical properties of the body surface of insects, such as Ae. albopictus can be
PDF
Album
Full Research Paper
Published 17 Apr 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • as crabs, and shrimps. It is also found in the skeleton of insects and the structure of cell walls of fungi [11][12]. Chitosan, which was defined as an antimicrobial agent for the first time by Allan and Hadwiger, exhibits broad-spectrum antimicrobial activity [13][14]. In the last decade, chitosan
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • and the adhesion energy between a sphere and the surface. More recent studies use the JKR model to determine the role of setal density in adhesion from insects to geckos [5]. Despite many advancements in our understanding of adhesion across organisms, few studies have incorporated ecologically
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • “construction elements” surrounded by a wool of nanofibers. This wool is used to capture prey, deploying van der Waals forces and additionally embedding the fibers into the viscous waxy layer of the insects’ cuticle [12][13]. One thread typically consists of 5000 to 30000 single fibers with a thickness of 10–30
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • anatomy of bee mandibles were characterized, it was possible to test whether propolis adhesion is indeed reduced on bee mandibles. Therefore, adhesion experiments with propolis were performed on bee mandibles. Materials and Methods Propolis and insects Propolis Raw propolis provided by private beekeeper
  • extract [21]. To prevent contamination, propolis was only handled wearing gloves cleaned with ethanol (Rotipuran®, ≥99.8%, p.a., Carl Roth GmbH & Co. KG, Karlsruhe, Germany). Insects Adult worker bees (Apis mellifera) were collected in gardens in Kiel (Germany) in July 2019 and immediately used for
  • propolis adhesion on mandibles Insect preparation for adhesion tests After insects for experiments were caught, they were placed and stored in the freezer at −20 °C for a minimum of 15 min and up to many months. The mandibles were prepared as described above (Figure 2). Without further treatment a mandible
PDF
Album
Full Research Paper
Published 14 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • phenomena of plant surfaces such as the splash behavior of liquids or the adhesion of insects under laboratory conditions [38][39]. In the past, long-chain hydrocarbons as well as native wax extract were recrytallized to mimic the native leaf structures and their associated properties [21][39][40][41][42
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • , lighter, and harder to detect [12][13]. Insects can hover, fly in any direction, turn quickly in the air, and resist interference caused by the external environment, showing strong agility, maneuverability, and stability. This has raised great interest to study the mechanism of the high lift generated by
  • insects in flight and to imitate the flight of insects [14][15]. Insect wings play a major role here. Hence, examining their flight parameters is crucially important to design biomimetic FMAVs [16][17]. It is increasingly clear that most insects obtain useful force with the help of aerodynamic mechanisms
  • body width was 23.74 ± 1.53 mm, and the body weight was 5.27 ± 0.16 g. All insects were acclimated under standard laboratory conditions (ventilation room, 25 ± 1 °C, 60% ± 5% humidity, 12 h light/dark cycle) and had free access to standard water and food. All procedures were conducted in accordance
PDF
Album
Full Research Paper
Published 26 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • . macrophylla Jebb and Cheek, N. mirabilis (Lour.) Druce, and N. rafflesiana Jack [16][17]. The waxy (slippery) zone located inside the pitchers is highly specialized for trapping and retaining of insect prey mainly due to contamination of attachment organs of insects [16], reduction of the real contact area
PDF
Album
Full Research Paper
Published 22 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • ; graphene oxide; nonenzymatic approach; parathion; pesticides; square-wave voltammetry; Introduction Crop production is constantly increasing to fulfil the demands of the growing population. The protection of crops against insects is a big challenge for our society. Pesticides have indiscriminately been
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022
Other Beilstein-Institut Open Science Activities