Search results

Search for "laser irradiation" in Full Text gives 90 result(s) in Beilstein Journal of Nanotechnology.

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
  • liquids; laser irradiation; nanofabrication; nanoparticles; shape control; Perspective 1 Introduction: Mechanisms and key parameters influencing the morphology of laser-produced NPs The precise control and tailoring of NP parameters has long been an aim of the laser ablation synthesis in liquids
  • . However, the additional 248 nm laser irradiation of the spherical NPs in methanol could transform NPs into nanowires. This underlines the importance of controlling chemical reactions during all stages of laser ablation and laser modification processes. Chemical interactions can become key parameters if
  • by unfocused laser irradiation as a second step. This strategy has developed into several methods usually categorized as laser-induced fragmentation, laser-induced melting, or laser-induced modification. Such multistep processes open up ways for precise manipulation and fine tuning of NP parameters
PDF
Album
Perspective
Published 10 Nov 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • laser irradiation to fragment larger NPs suspended in a colloidal solution, resulting in smaller NPs with a narrow size distribution. LFL is particularly beneficial as a post-processing tool for NPs produced by PLAL, a technique which often results in broader or bimodal size distributions as discussed
  • exposing colloidal NPs dispersed in a liquid medium to pulsed laser irradiation. This technique is known as pulsed laser melting in liquids (PLML) [6][41][42]. PLML involves heating and melting of raw NPs with unfocused laser pulses, leading to their aggregation and the formation of submicrometer spherical
  • ) synthesized by LAL were subjected to picosecond laser irradiation in the laser melting in liquids (LML) setup, the particles grew into significantly larger SMSPs (≈230 nm) after multiple laser passages [53]. Figure 5 presents SEM images and corresponding size distributions of Ge-based nanostructures. This
PDF
Album
Review
Published 27 Aug 2025

Wavelength-dependent correlation of LIPSS periodicity and laser penetration depth in stainless steel

  • Nitin Chaudhary,
  • Chavan Akash Naik,
  • Shilpa Mangalassery,
  • Jai Prakash Gautam and
  • Sri Ram Gopal Naraharisetty

Beilstein J. Nanotechnol. 2025, 16, 1302–1315, doi:10.3762/bjnano.16.95

Graphical Abstract
  • This research paper delves into the exploration of laser-induced periodic surface structures (LIPSS) on a 100 µm thin stainless steel (SS) sheet. Through the application of laser irradiation with wavelengths spanning from 400 to 2400 nm, we systematically generate ladder-like LIPSS across a substantial
  • structure with laser irradiation wavelengths ranging from 400 to 2200 nm. From this, a linear trend in LIPSS characteristics was observed up to 2000 nm, and the threshold of the LIPSS formation was determined [52]. In the present work, we extend the LIPSS over a large area, instead of a single line, using
  • 400 to 2400 nm laser irradiation. This enabled the examination of the cross-sectional zone where the cumulative effect of the laser irradiation occurs. We analyzed how these effects correlate with the incident laser wavelength. The manuscript delves into the critical parameter of penetration depth, or
PDF
Album
Full Research Paper
Published 11 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
PDF
Album
Review
Published 05 Aug 2025

Fabrication of metal complex phthalocyanine and porphyrin nanoparticle aqueous colloids by pulsed laser fragmentation in liquid and their potential application to a photosensitizer for photodynamic therapy

  • Taisei Himeda,
  • Risako Kunitomi,
  • Ryosuke Nabeya,
  • Tamotsu Zako and
  • Tsuyoshi Asahi

Beilstein J. Nanotechnol. 2025, 16, 1088–1096, doi:10.3762/bjnano.16.80

Graphical Abstract
  • suspended in a poor solvent is fragmented into nanoparticles by intense pulsed laser irradiation, and the sample suspension is directly converted in to a colloidal dispersion without any chemical additives in one step. It has been demonstrated that several hydrophobic dyes such as metal complex Pcs (MPcs
  • spectrometer, and the sample was irradiated with laser pulses until the absorption spectrum stopped changing. The sample was muddy blue, and most of the AlClPc precipitated to the bottom of the cuvette before laser irradiation. After irradiation with nanosecond laser pulses for 40 min (Figure 2a), the sample
  • turned to deep clear blue. A broad absorption with peaks at 620 and 800 nm appeared and increased with laser irradiation time; the absorbance stopped changing after around 30 min irradiation as shown in Figure 2b. The two peaks that appeared at short and long wavelengths relative to the isolated
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • reactions that span from atomic to macroscopic length scales. Consequently, it is paramount to understand the complex cascades that follow laser irradiation of condensed matter. Of particular importance here is the processing in the presence of liquids surrounding the irradiated material, but also
  • , it is important to understand and quantify such processes that may occur concomitantly and will affect each other. First, we develop a basic hypothesis of how laser irradiation with significant energy deposition into the system of interest (for example an aqueous colloid or solid surface in contact
PDF
Album
Review
Published 02 Jul 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • available for producing CCA NPs, pulsed laser ablation in liquids (PLAL) stands out as a particularly promising method [41][42][43]. PLAL is a straightforward and versatile method that does not require expensive precursors, reducing agents, or surfactants [44][45]. The process is based on the laser
  • irradiation of the target material submerged in a liquid environment. This makes PLAL a safe, scalable and environmentally friendly approach [46][47][48]. Research on the synthesis of CoCrFeMnNi Cantor alloy NPs by PLAL demonstrated that this method consistently produces NPs with near-equiatomic compositions
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • of nanoparticles in large quantities for practical use. In this study, we investigated improvements of the synthesis efficiency of nanoparticles in LRL by adding scavengers, such as isopropyl alcohol (IPA) and glycerin, for oxidative radicals formed by laser irradiation to the solution and converting
  • practical use. In this study, we attempted to improve the synthesis efficiency of nanoparticles using LRL by controlling the reaction environment of the solution during laser irradiation. Results and Discussion Increasing the synthesis efficiency of nanoparticles via laser-induced reduction by adding
  • radical scavengers In laser-induced reduction, laser irradiation breaks down water molecules to produce various radical species. The standard electrode potentials of solvated electrons (e−aq) and hydrogen radicals (H•) are E0 = −2.77 V and E0 = −2.1 V, respectively [33]. It has been reported that solvated
PDF
Album
Full Research Paper
Published 27 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • materials is intended to clarify the effect of the donut-shaped beam on NP size and to approve whether factors such as phase and composition can be disregarded. For example, the inertness of gold minimizes its oxidation by laser irradiation, whereas the HEA is composed of elements prone to oxidation
  • crystallographic plane (111) is very small but visible, whereas the other (200) and (220) peaks are not visible for the NPs. Laser irradiation plays a major role in the formation of HEA with strong (111) peak while minimizing (200) and (220) peaks [54]. The observed NP size-reduction trend for the donut-shaped
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • the reported specific surface area of the carbon fiber paper used here [24]. Pulsed laser grafting produced integrated gold nanoparticle–carbon fiber paper composites (Figure 2B), using aqueous 1.0 M HAuCl4 solution, hydrophilic carbon fiber paper, and unfocused Nd:YAG laser irradiation with 10 Hz, 8
  • that our laser fluence did not enable carbon sublimation. Stable gold colloids have been produced by reactive nanosecond laser irradiation of aqueous [AuCl4]– solutions [29][30]. Colloidal gold nanoparticle formation occurred by nucleation of reduced (metallic) gold atoms [25][31][32]. As in pulsed
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • to generate VNB ablation of the ILM covering the retina can help deliver drugs to the retina [167]. The common material used to generate VNBs, AuNPs, has disadvantages including long-term accumulated toxicity and fragmentation under laser irradiation [168]. ICG, which has been used in ophthalmology
  • for clinical ILM staining, is better suited for generating VNBs on the ILM, and the high NIR absorbance of ICG is beneficial in the in vivo environment. Karen Peynshaert’s team [169] demonstrated that ICG can bind to the ILM and generate VNBs upon pulsed laser irradiation, thereby disrupting the
  • through safe laser irradiation. Delivering stem cells to the trabecular meshwork to regenerate tissue and restore its function can treat glaucoma [207]. Labeling stem cells with the PAI contrast agent AuNSs allows for real-time monitoring of stem cell delivery and circulation in the anterior chamber
PDF
Album
Review
Published 17 Feb 2025

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • another widely used complex vector, polyplexes. They took the approach one step further and combined these polyplexes formed by a cationic polymer and anionic mRNA with a photosensitizer for photochemical internalization and subsequent enhancement in delivery to the cytoplasm. They showed that laser
  • irradiation increased the mRNA expression in the cytoplasm [160]. In addition to polyplexes, lipoplexes, another widely used vector, have also been studied for siRNA delivery. For instance, Hu et al. described the encapsulation of siRNA (specifically of c-Myc-targeting siRNA) in a core–shell lipoplex for
PDF
Album
Review
Published 12 Nov 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • parameter on NP productivity, shape, and size distribution remains an area of ongoing research [11][12][13][14][15]. Pulsed laser irradiation of liquids (PLIL) can affect the size and shape of NPs. Various approaches are described in the literature, such as (i) laser fragmentation in liquid (LFL), (ii
  • ) laser melting in liquid (LML), and (iii) laser defect engineering in liquid (LDL) [16]. In our previous work, we fabricated Ag–Cu alloy NPs using the femtosecond (fs) laser irradiation approach [17]. Similarly, Ag/Au alloy NPs were fabricated by laser ablation of single metal targets in water followed
  • by re-irradiation of mixed colloidal suspensions, as demonstrated by Compagnini et al. [18]. Additionally, Zhang et al. [19] reported the LML approach to synthesize germanium submicron spheres from picosecond (ps) laser irradiation of Ge powders containing nanoscale and microscale particles. Maximova
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • nanoparticles before and after their incorporation into k-CG were checked for photothermal response. On the contrary, AuNRs after incorporation into k-CG hydrogels showed a small increase in temperature as compared to that of AuNMs upon laser irradiation. Therefore, the intactness and ability of AuNMs as
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • , and LRL yield nanoparticles as products, whereas LML creates submicrometer spheres. LAL, LFL, and LML process solids, whereas LRL employs solvates as precursors (Figure 1). In detail, LAL describes the laser irradiation of a macroscopic target and the subsequent removal of surface matter, which leads
  • utilizes commercial-grade powders or nanoparticles to downsize the particles by laser irradiation with high fluences [7][25]; LML, in contrast, is used to isochorically alter the shape or increase the size of nanoparticles by low-fluence irradiation of nanoparticles [26][27]. A variant of LSPC is reactive
  • radical cations can participate in various reactions such as dehydration, dimerization, and hydrogen transfer before recombination [112][113][114]. This was recently shown for fs-laser irradiation of C5 to C11 alkanes by Ishikawa et al., who reported C–C bond formation. They analyzed the formed products
PDF
Album
Review
Published 05 Jun 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • ]. PDA-Ru nanoparticles could degrade Aβ fibrils under low-power laser irradiation because of their great photothermal effect. Moreover, PDA-Ru nanoparticles could decompose H2O2 owing to their strong CAT activity. PDA-Ru nanoparticles effectively improved memory capacity and decreased neuroinflammation
PDF
Album
Review
Published 12 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • layers [32][33] and the presence of twist between adjacent layers from the vanishing of the S modes in twisted MoS2 flakes [20][38][39][40][41]. Then, it is essential to determine the limit value of the laser power so that the above measurements are not affected by laser irradiation. Figure 1 shows the
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design
  • the heat produced by nanostructures under NIR laser irradiation [17][18]. Compared to traditional treatments, photothermal therapy allows for increased drug release and is less cytotoxic to healthy tissues [19]. It is a minimally invasive technique that offers the advantage of rapid recovery [20
  • stability and efficiency Fe3O4 NPs, PDA/Fe3O4 NPs, and VNB/PDA/Fe3O4 NPs (at a concentration of 0.1 mg/mL and in a total volume of 1 mL) were exposed to 808 nm (1 W/cm2) NIR laser irradiation for a duration of 5 min. PBS was used as a control. The temperature changes of the NP solutions were recorded using
PDF
Album
Full Research Paper
Published 28 Feb 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • technique to enhance the sensitivity of LFAs. In LFAs, the nanomaterials are deposited in the test zone along with the analyte to be determined. Upon laser irradiation, thermal energy is generated. The thermal output can be quantified using infrared thermal cameras or thermometers [25]. The quantity of heat
  • (PCE). However, studies report that gold nanorods suffer from poor photostability, and loss of shape and NIR LSPR upon laser irradiation [39]. By using palladium nanostructures, photothermal stability could be achieved to some extent as they did not change their shape upon laser irradiation. Palladium
  • cancer cells under 650 and 808 nm laser irradiation [54] (Figure 5B). The nanoparticles with a size of 2 nm showed a 5–6% higher photothermal conversion efficiency than the 80 nm particles. The higher photothermal effect of smaller nanoparticles can be explained by the Mie theory, which states that as
PDF
Album
Review
Published 04 Oct 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • NPs. The SEM image of PS@Ag reveals the presence of nanoscale gaps between the Ag NPs, which act as hot spots with a high electric field intensity when exposed to laser irradiation (Figure S10c). To confirm the distribution of chemical elements on the SERS substrate, energy-dispersive X-ray
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • laser irradiation and generate ROS, which synergizes with the subsequent release of CQ for anticancer effects. In the early stages of intervention with nanoagents and laser irradiation, both bare NPs and cancer cell membrane-encapsulated NPs exhibited good tumor suppressive effects. However, the tumors
PDF
Album
Review
Published 27 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • poly(ethylene glycol) with α-CyDs, in which adjacent α-CyDs interact to provide physical crosslinkings. Cisplatin (purple circle) was loaded in the hydrogel. Under NIR-II laser irradiation, the localized photothermal effect directly ablates thermosensitive cancer cells. At the same time, the
PDF
Album
Review
Published 09 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • Organisation, Sector-30C, Chandigarh-160030, India 10.3762/bjnano.14.20 Abstract The photothermal conversion efficiency of gold different nanoparticles (GNPs) in different concentrations (1.25–20 µg/mL) and at different irradiation intensities of near-infrared (NIR) broadband and NIR laser irradiation is
  • evaluated. Results show that for a concentration of 20.0 µg/mL, 40 nm gold nanospheres, 25 × 47 nm gold nanorods (GNRs), and 10 × 41 nm GNRs show a 4–110% higher photothermal conversion efficiency under NIR broadband irradiation than under NIR laser irradiation. Broadband irradiation seems suitable to
  • concentrations show almost equal efficiencies for NIR laser and broadband irradiation. On increasing the irradiation power from 0.3 to 0.5 W, for 10 × 41 nm GNRs in the concentration range of 2.5–20.0 µg/mL, NIR laser irradiation results in 5–32% higher efficiencies, while NIR broadband irradiation leads to a 6
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • could be associated stably to Au-LNPs, and the release of BODIPY from AB-LNPs could be accelerated by laser irradiation. AB-LNPs are scalable and showed excellent photothermal effects. AB-LNPs showed enhanced cellular uptake efficiency compared to free BODIPY in 4T1 breast cancer cells. Under laser
  • concentrations of 25, 50, and 100 μM were irradiated with laser irradiation (680 nm, 0.5 W/cm2) for different time intervals. The temperature changes of AB-LNPs with BDP concentration of 100 μM were also measured under laser irradiation with different power densities (0.25, 0.4, and 0.5 W/cm2). The temperature
  • changes of water, BDP, Au-LNPs, and AB-LNPs with a BDP concentration of 100 μM and a Au concentration of 100 μM with laser irradiation (680 nm, 0.5 W/cm2) were also recorded for 10 min. The temperature of the samples for photothermal conversion measurements was recorded by an infrared thermal camera
PDF
Album
Full Research Paper
Published 02 Dec 2022
Other Beilstein-Institut Open Science Activities