Search results

Search for "macroscale" in Full Text gives 52 result(s) in Beilstein Journal of Nanotechnology.

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • manipulation of matter on a nanoscale, typically ranging from 1 to 100 nm [2]. At this scale, nanoparticles can effectively interact with DNA and protein molecules [3][4]. Matter can exhibit distinct physical, chemical, and biological properties at the nanoscale compared to the macroscale, with significant
PDF
Album
Perspective
Published 16 Dec 2024

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • widespread feature in diverse plant groups (mosses, ferns, gymnosperms, and dicotyledons) as well as plant organs (roots, leaves, flowers, seeds, and fruits) [4][5][6]. Among the various substances produced by diaspores, mucilage at the macroscale can be very easy to perceive without any special equipment
  • observation of the mucilage envelope is easily possible at the macroscale with the naked eye. The hydration of the seed causes the formation of a transparent gel-like envelope surrounding the diaspore [7][73][74] (Figure 1), which is easily observable. Air-drying of hydrated mucilage causes water evaporation
PDF
Album
Review
Published 13 Dec 2024

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • time and length scales, from atomic and molecular-level interactions to the macroscale, that govern the structural, mechanical, and thermal properties of materials [4][5]. More recently, data-driven approaches, such as machine learning (ML) and artificial intelligence (AI), are revolutionizing
PDF
Album
Perspective
Published 27 Nov 2024

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • probe and excitation surface sizes on the modal response. To facilitate the exploration of the effectiveness and optimal conditions for the coupled system in practical applications, a macroscale experimental platform is established. By conducting finite element analysis and experiments, we compare the
  • performance of the coupled system with that of traditional cantilevers and quantify the enhancement in higher-order modal response. Also, the optimal conditions for the enhancement of macroscale cantilever modal response are explored. Additionally, we also supplement the characteristics of this model
  • , including increasing the modal frequency of the original cantilever and generating additional resonance peaks, demonstrating the significant potential of the coupled system in various fields of AFM. Keywords: atomic force microscopy; coupled system; higher-order modes; macroscale; multifrequency AFM
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • -AFM within the range from 10 kΩ to 100 GΩ with deviations lower than 2.5% relative to values calibrated at the macroscale using probe station measurements. The design of the proposed calibration sample features access to a wide range of resistance values (nine decades) within a single AFM scan
  • , calibration of these resistances at the macroscale using a probe station, compatibility with any commercially available AFM system, and the possibility of positioning a device under test (DUT) on the reference sample. Further efforts are underway to develop another sample version featuring easier access to C
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • . This is in sharp contrast to typical macroscale applications where, for example, the mechanical properties of steel and concrete can be directly used by engineers to design a bridge and predict its performance under real-life conditions. Finally, there is not sufficient communication between AFM
  • ][16][17] could be applied at different length scales, ranging from the nano- to the macroscale. One can envision various applications at larger scales, such as the characterization of muscular viscoelasticity in orthopedic rehabilitation or in athletics, where the mechanical properties of muscles
PDF
Album
Perspective
Published 09 Dec 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • , natural biological adhesives are complex materials that have evolved to meet the various functional demands. Bioadhesion can be found in the range of the micro- to the macroscale [7]. Adhesion principles include contact mechanical principles such as capillary interactions, viscous forces, non-covalent
PDF
Album
Review
Published 08 Sep 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • /NEMS devices, which break down before the pull-in occurs on the macroscale. Figure 1 shows the lumped parameters model [11] of electrostatically driven parallel plate actuators. The structure consists of two parallel plates. The upper plate is suspended by a spring above the lower plate, which is fixed
PDF
Album
Review
Published 12 Apr 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • are susceptible to corrosion when exposed to environmental conditions, the role of surface chemistry for friction must be investigated. At the macroscale, the existence of metal oxide surface films on MGs enhanced the wear resistance in corrosive solutions and the fluid lubricating films formed by
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • yielding antimicrobial function adds further benefits by reducing implant-related infections. Mesostructures of TiO2 were found to be the most efficient systems for efficient drug delivery, compared to microscale and macroscale structures. TiO2 has also been reported as an excellent photosensitizer and
PDF
Album
Review
Published 14 Feb 2022

Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

  • Venkata A. Surapaneni,
  • Tobias Aust,
  • Thomas Speck and
  • Marc Thielen

Beilstein J. Nanotechnol. 2021, 12, 1326–1338, doi:10.3762/bjnano.12.98

Graphical Abstract
  • surfaces. The changes in the micro- and macroscale morphology of the leaves should improve our understanding of the way that plants defend themselves against insect herbivores. Keywords: cuticular ridges; insect adhesion; leaf surfaces; ontogeny; polarity; surface replication; Introduction The plant
  • of macroscale morphology that might also reduce herbivory [34]. Conclusion CLSM measurements of PDMS replicas of Schismatoglottis calyptrata leaves have shown that the cuticular ridges display pronounced polarity and morphologically distinct levels during development. We have found smooth cellular
  • cuticular structure (ridge) development and might, thus, be of interest with regard to bioinspired applications. While the macroscale morphology of the leaves is expected to influence insect attachment during young leaf stages, the cuticular microstructuring on the leaf surfaces influences insect attachment
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • unconventional reservoirs range from micro- to nanometers [124]. The liquid flow in micro/nanopores can possess quite different characteristics from the macroscale liquid flow, and particularly the classical Darcy’s law may no longer be valid. It was demonstrated by many previous studies that in unconventional
PDF
Album
Review
Published 17 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • take the shape of fern-like dendrites. Lastly, with very high flux and high diffusion rates macroscale fractals are obtained. These phenomena are explained in Figure 4 and corresponding optical images of fab-fracs grown in the lab are shown. Fractal structures as gas sensors The complex fractal
  • of ZnO dendrites and single-crystal ZnO dendrites up to the macroscale [77]. These were synthesized via a vapor-phase transport method at 930 °C using a copper catalyst. Figure 16a and Figure 16b show, respectively, a schematic and a SEM image of the ZnO dendrite gas sensor device. The ZnO dendrites
  • macroscale, where the properties change with the length scales involved. This aspect has been addressed in the present review with focus on gas-sensing properties. While chemical or physical properties of the material may or may not remain the same, a change in geometry and architecture, especially as
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • . Keywords: actuation methods; external field actuation; micro/nanorobots; self-actuation; Introduction In the past few decades, micro/nanorobots have developed rapidly as an emerging field of robotics. Macroscale robots are limited in their use in specific scenarios such as working in small spaces. In
  • , and acoustic fields. The other is self-actuation, which includes chemical self-actuation, biological self-actuation, and other methods. Various actuation methods are used for micro/nanorobots, which add a certain degree of complexity compared to traditional macroscale robots. The selection of
  • progressing, scholars hope to explore the operation of groups of micro/nanorobots. Due to their small size and low cost, tens to hundreds of micro/nanorobots can work in parallel to perform tasks that are too cumbersome and impossible for macroscale robots. Hsu et al. [24] designed a control platform to study
PDF
Album
Review
Published 20 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • the layers was undesired. Membrane folding Recently, several papers on FIB-enabled nanoscale kirigami have been published using the gallium FIB to mill line patterns in free-standing membranes (equivalent to traditional macroscale paper cuts) followed by localized gallium ion implantation to induce
PDF
Album
Review
Published 02 Jul 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • arrangement in order to achieve desired macroscale properties. Thus, a theoretical understanding of the particle assembly mechanism is necessary to predict the nano/microscale structures responsible for the desired or observable properties. To our knowledge, constructal theory has never been applied
PDF
Album
Full Research Paper
Published 06 May 2021

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • to the macroscale. Due to their ability to store mechanical energy and to optimize the accessible surface area, helical shapes contribute particularly to motion-driven processes and structural reinforcement. Due to these special features, helical fibers have become highly attractive for
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • trajectory of NPs. In the case of soft hydrogel-based flow channels constructed to mimic vascular networks, the larger sized NPs moved slower than the smaller NPs, similar to trends seen in macroscale objects. This phenomenon could be explained in terms of two factors, a dominance of Brownian forces over
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • addition, it is known that the behavior of the fracture mechanism at the nanometer and micrometer scale are quite different than at the macroscale [29]. Kahrobaiyan et al. [30] showed that an extension of von Mises criterion for a nonclassical Euler–Bernoulli beam based on MCST could be derived as where σY
PDF
Album
Full Research Paper
Published 13 Jan 2020

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • ) magnetic fields have been measured at the macroscale with coarse spatial and/or temporal resolution, using MRI methods and magnetoencephalography for example. This does not supply single-neuron spatial resolution without scalability to functional networks or intact organisms. In [34], AP magnetic sensing
PDF
Album
Review
Published 04 Nov 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and −80 meV for the Au layer reflecting the formation of MoSe2 and Au/Bi2Se3 alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • . The narrow size distribution of their NOAA facilitates their intake by the cells. The low solubility of F201 and F202 could cause a retention of calcium phosphate deposits inside the cells, a kind of “cell stones”, similar to the deposition of macroscale calcium-phosphate stones in the kidneys. Such
PDF
Album
Full Research Paper
Published 27 Dec 2018

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • compare materials that show unpredictable properties at the macroscale, indicating the possibility of the presence of interfacial effects. To this aim, a simple approach, inspired by Peng et al. work [27], would be thinning the material into slices, starting with a thickness slightly larger than the
PDF
Album
Full Research Paper
Published 07 Dec 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • formed of spherical AuNPs attached to a sharply pointed glass tip. Inset: Magnification to the gap region showing the aligned CB[n]s on the NP surfaces, which results in a sub-nanometer gap distance. (C) Macroscale picture of a glass tip attached to a piezoelectric quartz tuning fork acting as a force
PDF
Album
Full Research Paper
Published 17 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • -scale friction and mechanical control of specific single-asperity combinations, e.g., nanoclusters on layered materials, then scaling up to the meso/microscale of extended, occasionally lubricated, interfaces and driven trapped optical systems, and eventually up to the macroscale. Currently, this “hot
  • friction was recently observed for micro- and macroscale systems based on incommensurate sliding between graphene-covered spheres or “nanoscrolls” and substrates [76][77]. Also a decrease of friction shear stress with increasing number of layers has been observed for graphene over Si/SiO2 in vacuum
  • shown low-friction properties for extended periods of time. Early examples of superlubricity at the nano- and microscale and even at the macroscale were observed [44][77][177][178]. In addition to the role of friction in energy conservation, the control and reduction of adhesion has a great
PDF
Album
Review
Published 16 Jul 2018
Other Beilstein-Institut Open Science Activities