Search results

Search for "nanoscale dielectric properties" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • variations influence key properties such as charge transport, polarization dynamics, and defect distributions, directly impacting the performance of microelectronic and energy systems [14][15]. Understanding these effects requires correlating nanoscale dielectric properties with structural and morphological
  • lock-in amplifier (LIA). The following sections introduce the theoretical framework of multifrequency EFM, demonstrate its resolution enhancement experimentally, and validate its spectroscopic capabilities by measuring nanoscale dielectric properties of microfabricated SiO2 samples. Finally, we compare
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • : adhesion; atomic force microscopy (AFM); graphene oxide (GO); nanoscale dielectric properties; reduced graphene oxide (RGO); Introduction The local dielectric distribution is a key factor that influences the physical properties and functionalities of various materials such as polymer nanocomposites [1][2
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018
Other Beilstein-Institut Open Science Activities