Search results

Search for "permeation" in Full Text gives 60 result(s) in Beilstein Journal of Nanotechnology.

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • size can cause cellular damage or prevent membrane permeation for drug delivery [10]. Therefore, a fine and reproducible size control during NP synthesis is essential. Pulsed laser ablation in liquids (PLAL) allows for the synthesis of colloidal NPs offering numerous advantages, such as being
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • surrounding, high levels and different mechanisms of drug resistance and radiation tolerance, as well as a blocking effect of the blood–brain–tumor barrier (BBTB) for drug permeation into the brain extracellular matrix lead to high recurrence rates (in up to 90% of patients) even when complete treatment is
  • that particles with negative (and neutral) zeta potential have a higher capability to escape opsonization and accumulation in liver and spleen (which is a precondition for prolonged circulation time of the particles/TMZ). In addition, particles with suitable size (between 50 and 400 nm) for permeation
PDF
Album
Full Research Paper
Published 19 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • considerably impaired compared to that of the pristine MOF [86]. The major issue arising from such incompatibility is the formation of void defects within the MMM due to insufficient adhesion between the MOF interface and the polymer matrix. Such voids act as non-specific permeation sites [80]. Consequently
  • layers are formed, decreasing the mass transfer resistance and increasing the gas permeation flux. Sutrisna et al. [98] fabricated a novel HFMMM consisting of an inner polyvinylidenfluorid (PVDF) porous support dip-coated with a highly permeable poly(1-trimethylsilyl-1-propyne) (PTMSP) gutter layer, a
  • improved resistance to temperature and chemical factors over conventional HFMMMs [60][99]. Compared with traditional flat sheet MMMs, the significant decrease in the thickness of the dense, selective layer inherently decreases mass transfer resistance and enhances gas permeation flux [80][87], rendering
PDF
Album
Supp Info
Review
Published 12 Feb 2025

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • through dialysis for 1.5 h using a 12000 Da pore dialysis bag. The size of p(Hist-CA) is approximately 12 ± 3 nm according to TEM, and it forms aggregates ranging in size from 80 to 150 nm (Figure 1a,b). The molecular weight of p(Hist-CA) was determined using gel permeation chromatography (GPC). The GPC
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • indicated by increased MSD values. Collectively, these changes destabilize the bilayer structure, facilitating endosomal membrane permeation and priming the bilayer for the structural rearrangements required for membrane fusion. The increased membrane fluidity and lipid disorder observed in the simulations
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • environments. Because of the excellent pharmaceutical attributes and mucoadhesive characteristics, the THQ-PLHNPs show controlled release characteristics and manyfold enhanced intestinal permeation compared to free THQ suspension. Cell culture experiments suggested that the fabricated THQ-PLHNPs significantly
  • against BC [101]. The developed THQ-PLHNPs gel showed much higher skin permeation and retention compared to the conventional THQ gel. The THQ-PLHNPs were non-irritant when applied to the skin. Furthermore, the developed gels showed higher antiproliferative activity against MCF-7 and MBD-MB-231 cells than
  • CHS-based mucoadhesive PLHNPs in improving PRN’s intestinal permeation, oral bioavailability, and anti-BC activity [154]. The developed PLHNPs were optimized by the “Quality by Design” approach. The optimized PRN-PLHNPs were stable in the GI milieu and showed excellent mucoadhesive strength and
PDF
Album
Review
Published 22 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • opportunity to modify the release profile of the drugs, enhance targeting efficiency, and improve nasal permeation during intranasal administration [21][22][23][24]. In general, the encapsulation of active pharmaceutical ingredients (APIs) into mucoadhesive DDSs can mitigate rapid mucociliary clearance [25
  • mucin. While the presence of the mucin did not significantly alter the negative surface charge of the PLGA NPs, the more negative zeta potential values of the PLGA-chitosan NPs showed that there was an interaction with mucin. Following this, the RH-loaded NPs showed 3.22-fold enhanced drug permeation
  • vivo permeation studies. The PLGA NPs showed size- and time-dependent uptake mechanisms. For instance, PLGA NPs with particle sizes of 80 and 175 nm were taken up after only 5 min in the lamina propria; after 15 min, PLGA NPs with a particle size of 520 nm were associated with nuclei. Additionally, the
PDF
Album
Review
Published 12 Nov 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • microfluidics, are still too costly for routine research in developing countries [138][139]. The therapeutic performance of intravenous nanomedicines strongly depends on the anatomical pathological context, mainly on the extent of inflammation or retention permeation effect, and the extracellular matrix
PDF
Album
Review
Published 27 Mar 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • nanofiber scaffold, a slow release of BBR was observed during the first 24 h (lag time), attributed to the hydrophobicity of the scaffold requiring a long time for water permeation. When the scaffold was wetted, BBR was fast released, reaching approximately 60% of the loaded BBR in 36 h. However, in the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • unsaturated free fatty acid in the outer layer of human skin, is commonly used as a permeation promoter, inducing the disruption of the lipid structure of the membrane. de Oliveira et al. [85] showed in vitro that oleic acid encapsulated in polymeric nanoparticles could potentially be used in schistosomiasis
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • barriers besides cellular membranes need to be addressed. A few examples of these barriers are penetration in or permeation through mucus, skin penetration, overcoming the blood brain barrier, or extravasation from blood vessels. Another challenge is the accumulation of particulate drug delivery systems in
PDF
Album
Perspective
Published 23 Nov 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • the lysosomes, exposing the PDMAEMA layer decorated with triphenylphosphonium (TPP) ligand to the environment. The TPP lipophilic cation is characterized by a large hydrophobic surface area, which facilitates its permeation throughout phospholipid bilayers, lysosomal escape due to the proton sponge
PDF
Album
Review
Published 22 Feb 2023

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • × 10−6 cm/s, respectively. Both nanoparticulate DCX formulations exhibited a significantly enhanced permeation across the cell line compared to free DCX (p < 0.05). Moreover, DCX-PLGA NPs increased Papp by 134.1% while CS/DCX-PLGA NPs increased Papp by 383.5%. The Papp of CS/DCX-PLGA NPs was
  • , Ünal et al. examined the transportation of the positively and negatively charged NPs loaded with DCX through the Caco-2 cell layer. Cationic NPs showed an approximately 50% increase in penetration in comparison with anionic NPs [73]. In another study, Sheng et al. investigated the permeation of CS
PDF
Album
Full Research Paper
Published 23 Nov 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • closely packed cells equipped with tight junctions. Its thickness is approximately 50 μm [40], and it plays an important protective role. The posterior segment of the eye contains sclera, choroid, Bruch’s membrane, and blood–retinal barrier, which further prevent drug permeation. The thickness of the
  • sclera, a membrane composed of randomly scattered collagen fibers, ranges from 0.5 to 1 mm, depending on the region of occurrence [41]. While the sclera is another barrier preventing drug permeation, the choroid is responsible for drug elimination. The blood–retinal barrier is connected to the retinal
  • vascular endothelium with tight junctions hampering the permeation of active ingredients to the intraocular area. When designing non-invasive ophthalmic drug dosage forms, the main aim is to improve the bioavailability by increasing the diffusion across sclera, cornea, and conjunctiva [42]. In the case of
PDF
Album
Review
Published 24 Oct 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • , and the zone of inhibition was measured in millimeters using a ruler (Figure 3). Statistical analysis The results are presented as means ± standard deviation. Statistical comparison between microneedles and free CIP gel, in terms of ciprofloxacin permeation, was made using GraphPad Prism software (ver
  • [54]. Skin deposition study One-way ANOVA analysis showed a significant difference in the permeation of ciprofloxacin between the free CIP gel and CIP_MN1, after one hour and after 12 h (P value = 0.015). Moreover, the results also showed that the deposition of the incorporated drug into deeper layers
PDF
Album
Full Research Paper
Published 15 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • permeation mechanism [6][9][10]. Nanocarriers can be used together with polymeric MNs in a synergistic therapy. The nanocarriers can immediately come into contact with the stratum corneum with the help of polymeric MNs, enhancing the transdermal drug delivery of the drugs. Furthermore, these polymeric MNs
  • or during application, which can increase the permeation of certain molecules by up to 200 times [16]. In addition to being a minimally invasive route, transdermal drug delivery has low drug absorption variability among patients, since the cutaneous metabolism is significantly lower than the
  • gastrointestinal one. Despite the great therapeutic potential, the use of this pathway is limited by the low permeation of molecules through the stratum corneum, the outermost layer of the skin, which works as a barrier, blocking the transport of drugs through the subcutaneous tissue. To overcome this difficulty
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • week) were determined for three months. The 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to test the cytotoxicity of the formulations and different EGCG solutions on the L929 cell line. The cell permeation properties and inhibitory effects of ETHs and ETHGs on
  • release kinetics were investigated. The formulations used had PSs in the nanoscale range and drug encapsulation efficiency values were over 97.2% and 77% [34]. In our study, both the ETHs and ETHG systems have been proven to be effective and safe in treatments with the cell permeation rate and
  • /w) Carbopol 980 exhibited zero-order release profile at a targeted site for a relatively longer period of time and better characteristics in the stability study, thus making it more pharmaceutically acceptable [37]. Permeation studies Permeation studies of EGCG from solution, ETHs, and ETHGs were
PDF
Album
Full Research Paper
Published 31 May 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • mappings of the films were obtained by energy-dispersive spectroscopy (EDS) connected with FE-SEM (NovaTM NanoSEM 230). Single gas permeation The synthesized ZIF-8 membrane was sealed in a stainless permeation module with two silicone O-rings on each side of the disc. Before individual permeation
  • other side of the membrane was connected to a soap-film flow meter downstream to measure the gas permeation volume of the target gas. The pressure drop between feed side and permeation side was measured by a pressure meter (Bronkhorst EL-PRESS) and was kept at 20 psi. The temperature of the system was
  • kept at room temperature (25 °C). The permeance Pi (mol·m−2·s−1·Pa−1) of the permeation gas was determined using the following equation: where Ni (mol·s−1) is the permeation molar flow rate of component gas i, ΔPi (Pa) is the trans-membrane pressure drop of gas i, and A (m2) is the effective membrane
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • into cross-linked polyvinylpyrrolidone (PVP) [15]. ENH membranes, along with their high porosity and high aspect ratio, possess a high permeation ability, adsorbability, and selectivity, which makes them excellent for environmental remediation, specifically for the adsorption and filtration of
  • ][50]. Electrospun membranes have shown many advantages over conventional membranes used in water treatment/purification. Some of the common limitations of the conventional membranes are fouling, scaling, limited porosity, low mechanical strength, low permeation, low wettability, and residual solvents
  • -hydroxybutyrate-co-4-hydroxybutyrate) (P34HB), which is a polyester that renders a water-permeable membrane for highly efficient removal of water from the emulsion under gravity filtration. The water permeation time was reduced from 130 to 9 s with the increase of P34HB from 30 to 50 wt % [68]. Ge et al
PDF
Album
Review
Published 31 Jan 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • microscopy; oxygen permeation; Introduction Acceptor-doped cerium dioxide, where cerium is partially substituted by cations of lower valence (most prominently Gd3+), is a fluorite material with a very high oxide ion conductivity at comparably moderate temperatures (around 600 °C). It has already been in
  • permeation membrane, as oxygen sensor material, or for the use in solid oxide fuel cell components [1][5][6]. Apart from this, ceria is also widely employed as a catalyst in the middle- to low-temperature regime (20–400 °C) [7][8][9], making ceria-based dual-phase materials with a second electron-conductive
  • spinel or perovskite phase applicable in membrane reactors for partial oxidation reactions. Dual-phase membranes with FeCo2O4, or its iron-rich pendant Fe2CoO4, and Gd-doped ceria as an ion conductor have already been successfully applied as oxygen permeation membranes with high permeability in the
PDF
Album
Full Research Paper
Published 15 Dec 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • Conventional nanosystems are particularly attractive for the biopharmaceutics classification system (BCS) class IV drugs, such as CUR, which require increases in their solubilization, pharmacokinetics, and permeation [43]. Curcumin has been targeted against carcinogenic lesions in the colon, skin, cervix
  • nanotransporters, due to their liquid-phase lipids [61]. The intestinal permeation of a CUR-loaded NLC has been studied in vitro in Caco-2 cells [69]. The formulation protected the compounds from degradation under basic pH, significantly improved the solubility of CUR, and increased its apparent permeation
  • receptors), while the enhanced effect of permeation and retention was considered for passive targeting. Results showed improved in vitro cellular uptake, targeting capability, and cytotoxicity against the human colon cancer cell line HCT116, which was related to early apoptosis after 24 h of incubation. On
PDF
Album
Review
Published 15 Sep 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • , where cancerous cells accumulate at defined tumor sites and the cytotoxic drugs could be passively targeted to these tumor sites through enhanced permeation and retention (EPR) effect, leukemic cells are prevalent in the whole circulatory system and the EPR is of no use. Moreover, the inherent
PDF
Album
Review
Published 29 Apr 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • ., passivation, or as separate particles) or are bound to proteins. These leads to the formation of secondary NPs, chloro complexes and protein interactions in the RPMI medium yielding a Ag compounds that have a molecular mass above the nominal value of the 3 kDa filter membrane, which affects filter permeation
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • accelerator used was 100:90:1 w/w/w, respectively. As an additional organic component, bisphenol A polycarbonate from Makrolon 3108 (Goodfellow, UK) with Mw ≈ 49,550 g/mol and Mn ≈ 21,400, as measured by gel permeation chromatography (GPC), was used. As an inorganic component, boehmite (γ-AlOOH) from two
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021
Other Beilstein-Institut Open Science Activities