Search results

Search for "reptiles" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Subdigital integumentary microstructure in Cyrtodactylus (Squamata: Gekkota): do those lineages with incipiently expressed toepads exclusively exhibit adhesive setae?

  • Philipp Ginal,
  • Yannick Ecker,
  • Timothy Higham,
  • L. Lee Grismer,
  • Benjamin Wipfler,
  • Dennis Rödder,
  • Anthony Russell and
  • Jendrian Riedel

Beilstein J. Nanotechnol. 2026, 17, 38–56, doi:10.3762/bjnano.17.4

Graphical Abstract
  • significantly among both microstructure types and ecotypes. Keywords: ecomorphology; evolution; habitat-specific adaptations; microfibrils; microornamentation; reptiles; toepad evolution; Introduction How a species’ habitat influences its mode of locomotion and how species adapt to effectively traverse and
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2026

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • reptiles, and has been a focus of both engineering and biological studies [3]. Models are frequently used to describe adhesion, such as the Johnson–Kendall–Roberts (JKR) model [4]. In this case, the force required to pull an elastic sphere from a flat surface is determined using the radius of the sphere
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • structures show similarities to the skin of certain reptiles and integument of insects. Different irradiation parameters are investigated to produce the desired structures, including laser repetition rate and laser fluence, paying special attention to the influence of the number of times the same area is
  • surface morphology. We present experimental results of complex self-organized structures produced in commercial steel that resemble the morphology of the skin of certain reptiles and insects, which are of great interest due to their exceptional fluid transport and friction reduction properties. Surface
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • ; Introduction Areas with loose, aeolian sand in the deserts of North Africa and the Arabian Peninsula are the habitat of the lizard Scincus scincus [1] (see Figure 1a). It hides from predators by burying in sand within seconds. This defence strategy is also known from other reptiles [1]. S. scincus, however, is
  • , he assumed that these are the origin of the favourable frictional properties of reptiles living in a sandy environment. Klein et al. [14] speculated that a material gradient in the snake integument minimizes damage during locomotion. However, as pointed out by Baumgartner et al. [6][10] the comb-like
  • nanostructure of the sandfish is found only on dorsal scales and is missing on ventral scales. Moreover, both types feature a similar friction coefficient. Finally, such a comb-like structure can be found on many reptiles even on those that do not sand-swim or live in a different environment [15]. Consequently
PDF
Album
Full Research Paper
Published 02 Oct 2018

Equilibrium states and stability of pre-tensioned adhesive tapes

  • Carmine Putignano,
  • Luciano Afferrante,
  • Luigi Mangialardi and
  • Giuseppe Carbone

Beilstein J. Nanotechnol. 2014, 5, 1725–1731, doi:10.3762/bjnano.5.182

Graphical Abstract
  • understanding of adhesion of thin films is of prominent importance in a huge number of biological and biomechanical applications. As an example, the extraordinary adhesive abilities characterizing the hairy attachment systems of insects, reptiles and spiders have drawn significant research efforts aimed at
PDF
Album
Full Research Paper
Published 07 Oct 2014

Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

  • Philipp Comanns,
  • Christian Effertz,
  • Florian Hischen,
  • Konrad Staudt,
  • Wolfgang Böhme and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2011, 2, 204–214, doi:10.3762/bjnano.2.24

Graphical Abstract
  • - or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales
  • replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This
  • ", appears more appropriate to us as it describes the different kinds of water acquisition more comprehensively. It is important to note that, for the reptiles concerned, no significant water uptake is done through the integument itself. Rather, the water is transported on the integumental surface towards
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2011
Other Beilstein-Institut Open Science Activities