Search results

Search for "selectivity" in Full Text gives 281 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • , electrostatic forces, and van der Waals forces, adsorbed antibiotics may desorb and reenter aquatic environments [12]. Moreover, activated carbon exhibits low selectivity and adsorption capacity. Among novel adsorbents, metal-organic frameworks [13] and molecularly imprinted polymers (MIPs) [14] are
  • porosity, enhanced selectivity, more hydrophobicity, and a simple synthesis process, along with cost-efficiency and high adsorption capacity, holds promise as an effective adsorbent for the treatment of aquaculture wastewater. Overall, this study lays the groundwork for future research on synthesizing
  • monoaldehydes (e.g., formaldehyde) and other dialdehydes (C2 to C6) [37]. GA and PVA have been used as cross-linking agents in CMC-based materials to enhance selectivity, stability, and mechanical properties [38]. This method is both cost-effective and highly efficient in strengthening materials while improving
PDF
Album
Full Research Paper
Published 27 May 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • concentrations. In all experiments, chemical degradation was minimal (<2%), and increased mass concentration of curcumin enabled ultralow by-product formation of 0.01%. The process selectivity against degradation was defined by the application-relevant descriptor of mole degradation per produced submicrometer
  • efficiency (higher yield of small particles) but also with a lower chemical degradation in comparison to CBD. This means curcumin LFL has a higher selectivity (produced SMPs versus degradation by-products). Overall, there is a material-dependent difference in the fragmentation process of the two model
  • materials, with curcumin not only reaching higher yields but also higher product selectivity. Nevertheless, it is noticeable as a common trend for both model substances that low concentrations (0.01 wt % curcumin or 0.1 wt % CBD) lead to the best increase in fragmentation efficiency, but also result in an
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • polyclonal antibody M94 has demonstrated high selectivity towards pathogenic AβOs, while not recognizing physiological Aβ monomers. This selectivity is vital, as it helps to minimize potential off-target effects and enhances the therapeutic profile of the antibodies [25]. Additionally, the monoclonal
  • characteristics enable specific interactions with amyloid fibrils, effectively inhibiting oligomerization and reducing neuronal cell death. Moreover, these NPs can be functionalized with targeted ligands, enhancing their selectivity and efficacy in therapeutic applications aimed at Aβ-induced neurotoxicity
  • therapeutic interventions and early diagnostic tools in the fight against AD. Antibody-functionalized nanomaterials for detection and inhibition of AβOs Unmodified NMs often demonstrate limited selectivity and functionality for AβO detection and inhibition, potentially leading to false positives or inadequate
PDF
Album
Review
Published 22 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • and cinnamaldehyde [3][14][15]. Zeolites modified with nickel and cobalt have shown promising results in selective hydrogenation reactions, owing to their high dispersion of active sites and tunable acidity. For instance, a zeolite-supported Ni catalyst has demonstrated selectivity in furfural
  • zero was considered at this point. During the catalytic test, the reaction was carried out under constant pressure using a pressure control system. After various reaction times, liquid samples were manually collected and analyzed by gas chromatography to determine conversion and selectivity values. It
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • recent decades, technological advances such as membrane technology and energy recovery equipment have led to a considerable reduction in the energy required to desalinate seawater [2][3]. The proposal to use membranes that exhibit superior selectivity and high water flux has been a major focus for
PDF
Album
Full Research Paper
Published 11 Apr 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • AFM; model catalysts; nc-AFM; operando catalysis; qPlus tuning fork sensor; Introduction Operando catalysis is the field of research that monitors the structure, composition, and morphology of a catalyst while simultaneously investigating its activity, reactivity, and selectivity under industrially
PDF
Album
Full Research Paper
Published 21 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • synthesized nanoparticles exhibited a distinct colorimetric response to SDS when combined with the Bradford reagent, which acted as a linker molecule. Interference studies demonstrated the high selectivity of the method, even in the presence of various heavy metals and other surfactants. The method showed
  • selectivity and sensitivity for SDS detection, making it a promising analytical tool for rapid and onsite estimation. Keywords: Bradford reagent; environmental monitoring; PEG–PCL nanoparticles; SDS; SDS detection; Introduction Sodium dodecyl sulfate (SDS), or sodium lauryl sulfate, is an anionic surfactant
  • technique for quantifying surfactants employs ionic electrodes to measure the unknown concentration of the target substance within 30 minutes. However, this method exhibits reduced sensitivity (280–600 µg/mL) and selectivity, rendering it less than optimal for analyzing surfactants in relatively complex
PDF
Album
Full Research Paper
Published 20 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • effectively and precisely break down and neutralize antibiotic compounds with high efficiency and selectivity by utilizing a complex interaction between radical reactive oxygen species and non-radical equivalents under light irradiation. Although photocatalysts have certain drawbacks, such as a limited
  • AOPs facilitate antibiotic degradation without extra chemical oxidants and with minimal harmful byproducts, promoting environmental sustainability [27]. Moreover, they exhibit high selectivity towards antibiotics while preserving water quality. Compared to other photocatalysts material, semiconductor
PDF
Album
Review
Published 25 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • ) was found to direct both the nanoparticles’ phase selectivity and recovery after cycling. The observed correlations provide potential guidelines for nanoparticle extraction and size separation, relevant for phase transfer and cycling during homogeneous catalysis. Keywords: catalysis; laser ablation
  • , changing the polarity of the non-polar solvent phase for the laser ablation of copper. Iron and copper stand in the middle of the investigated standard electrochemical reduction potential metal series and show quite interesting phase selectivity behavior. Moreover, cupreous nanoparticles are relevant for
  • both heterogeneous and homogeneous catalysis [49][50][51]; hence, we investigated their phase selectivity in more detail. The accumulated Cu or Fe concentration in both phases was quantified and the TMSs were cycled through mono- and biphasic states repetitively to investigate the stability of the
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Probing the potential of rare earth elements in the development of new anticancer drugs: single molecule studies

  • Josiane A. D. Batista,
  • Rayane M. de Oliveira,
  • Carlos H. M. Lima,
  • Milton L. Lana Júnior,
  • Virgílio C. dos Anjos,
  • Maria J. V. Bell and
  • Márcio S. Rocha

Beilstein J. Nanotechnol. 2025, 16, 187–194, doi:10.3762/bjnano.16.15

Graphical Abstract
  • side effects related to these therapies. Actually, both aspects depend on the development of new drugs and/or drug carriers that can improve the selectivity of these anticancer agents to reach their specific targets inside tumor cells [3][4][5]. Although commonly used in a number of technological
PDF
Album
Full Research Paper
Published 14 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • , Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark 10.3762/bjnano.16.14 Abstract Polymeric membranes offer an appealing solution for sustainable CO2 capture, with potential for large-scale deployment. However, balancing high permeability and selectivity is an inherent challenge for pristine
  • membranes. To address this challenge, the development of mixed matrix membranes (MMMs) is a promising strategy. MMMs are obtained by carefully integrating porous nano-fillers into polymeric matrices, enabling the simultaneous enhancement of selectivity and permeability. In particular, metal-organic
  • operation [5]. However, a significant drawback of membrane separation is the inherent trade-off between permeability (pressure-normalized flux) and selectivity (αA/B) for gases A and B, as described by the relationship in Equation 1 [5][12][13][14]. where PA is the steady-state permeability of the more
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • cereus (ATCC 10876) and Proteus mirabilis (ATCC 35649). The analysis revealed remarkable antibacterial activity against Proteus mirabilis, suggesting a preferential selectivity for Gram-negative bacteria. Keywords: adsorption; bentonite; hybrid pigment; niobium; photocatalysis; water remediation
  • mechanism of action remains unclear. The BEPh, BEOx, A-BEPh, A-BEOx, A-BEPhP, and A-BEOxP samples did not exhibit minimum inhibitory activity against the other studied bacterial strain Bacillus cereus. These results highlight the selectivity of the studied samples (A-BEPh, A-BEPhP, A-BEOx, and A-BEOxP) in
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • nanoparticles, sodium Linde A Type (LTA) zeolite, also known as NaA zeolite, stands out for its remarkable capacity and selectivity to capture various types of metals commonly found as contaminants in drinking water. These metals include Ca, K, Mg, Mn, Co, Zn, Cu, Pb, Cd, Cs, and Sr [42][43][44][45][46
PDF
Album
Full Research Paper
Published 17 Jan 2025

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • (Figure 1-2C), which mask the nanocarriers and enhance biological activity (Figure 1-2D) [20]. This mimetic surface helps the device to mask epitopes potentially recognized by the immune system, thereby enhancing their biocompatibility. Additionally, the selectivity for targets and the circulation time of
  • employed in treating other diseases, such as Alzheimer's disease. Current medications for Alzheimer's face the challenge of the blood–brain barrier (BBB), which includes the blood–brain, cerebrospinal fluid–brain, and blood–cerebrospinal fluid barriers. These barriers exhibit high selectivity in drug
  • nonpermissive characteristics at the barrier [69]. Polymeric nanoparticles, as well as those based on lipids and inorganic materials, are extensively studied for Alzheimer's disease treatment due to their tissue selectivity, potential circulation time, encapsulation capacity, and, importantly, their ability to
PDF
Album
Perspective
Published 16 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • effectiveness by increasing the selectivity of action and reducing risks through lower dosages. Such approaches appear very promising, but it is essential to consider the risks of nanotoxicology, that is, possible undesirable side effects of nanoparticles. Combining phytopreparations with biocompatible
PDF
Album
Full Research Paper
Published 11 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • conductivity, and potent catalytic activity, make them ideal candidates for environmental monitoring and remediation [3]. Modifying silver nanoparticles with various biological molecules, peptides, proteins, and enzymes has further enhanced their functionality, stability, and selectivity towards specific
  • synthesized ʟ-carnosine-capped silver nanoparticles. The metal ion selectivity (regarding Cd2+, Pb2+, As3+, and Cr3+) was monitored via colorimetric and spectrophotometric approaches. Furthermore, the catalytic activity was assessed using P-NP as a reagent. Through this study, we aim to contribute to the
  • ± 0.2, and the concentration of added metal ions was 0.5 ppm. The results show that only the tubes containing As3+ and Cr3+ display a prominent color change from ruby red (control) to dark yellow (Figure 6d). This implies that ʟ-car-AgNP2 has strong selectivity towards As3+ and Cr3+. Figure 6b shows the
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection

  • Thi Kim Ngan Nguyen,
  • Tien Dat Doan,
  • Huy Hieu Luu,
  • Hoang Anh Nguyen,
  • Thi Thu Ha Vu,
  • Quang Hai Tran,
  • Ha Tran Nguyen,
  • Thanh Binh Dang,
  • Thi Hai Yen Pham and
  • Mai Ha Hoang

Beilstein J. Nanotechnol. 2024, 15, 1522–1535, doi:10.3762/bjnano.15.120

Graphical Abstract
  • 13 µM, a low detection limit of 3 nM, and high selectivity. Under the experimental conditions, the sensor provided satisfactory recoveries ranging from 90.2% to 121.3% in both tap water and lake water samples. Experimental Reagents and apparatus Reagents Enrofloxacin (ENR, C19H22FN3O3, 98%) was
PDF
Album
Full Research Paper
Published 28 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • regulatory cells for the homeostasis of the BBB. The interaction between astrocytes and pericytes plays a vital role in brain vasculogenesis and the maintenance of the BBB [12]. Overall, the high selectivity of the BBB provides optimal conditions for CNS homeostasis [13]. Because of the presence of the BBB
  • and specific targeting. In N2B delivery, DDSs provide them stability and the ability to penetrate biological barriers through their tailorable surface characteristics. Among biopharmaceuticals, siRNAs also stand out because of their selectivity for a single gene, bringing new opportunities to provide
PDF
Album
Review
Published 12 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • concentration. The capping provides metal selectivity, whereas bare AgNS1.0 (without capping) showed unspecific metal detection such as Cd2+, Zn2+, Hg2+, Ni2+, Cu2+, Cr3+, Pb2+, Fe3+, and Co2+ (Figure 5d). However, in another study, only Hg2+ was detected with silver nanoparticles capped with poly(allylamine
  • /mL CTAB, which changes in the case of centrifuged CTAB-AgNS to 856 µg/mL. Despite less CTAB on the silver nanoparticle surface, they showed excellent sensing capability even at lower nanoparticle concentration. The addition of NaOH (5–50 µL) to centrifuged CTAB-AgNS led to no selectivity toward metal
  • metal selectivity switched upon increasing the volume of NaOH, confirming the significant role of NaOH in designing the nanoparticle-based sensor. Selective metal detection using centrifuged AuNR10.5 was achieved among all metals in the presence of NaOH only (Supporting Information File 1, Figure S11
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of
  • incorporation of active targeting strategies is expected to further enhance the selectivity and performance of usNPs for cancer treatment. By designing usNPs to target surface receptors on cancer cells, tumor retention can be improved by minimizing particle intravasation back to tumor blood vessels. Active
  • illustration of targeted AuNCs and their binding selectivity to PSMA-positive (PC3pip) over PSMA-negative (PC3flu) prostate cancer cell. (B) Illustration of intravenous injection of AuNCs, highlighting improved targeting levels and enhanced radiation therapy in PSMA-expressing tumors. (C) Tumor growth curves
PDF
Album
Review
Published 30 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • measured at lower CH4-to-air ratios because of the higher O2 content. Therefore, optimizing the CH4/air ratio is important for improving the OCM reaction. The highest coupling selectivity was around 90% at CH4/air ≈ 4.5:0.5, comparable to or higher than that of typical reported photocatalysts (Table 1
  • structure of the catalyst provides a surface that can massively increase light absorption, achieving an efficient C2H6 yield of 210 µmol/cm2 in 6 h with high selectivity under light illumination at room temperature. This research could offer new insights into composite photocatalysts for methane coupling
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • , a good deposition rate was observed. After several hours, condensation became visible, which could be avoided by heating the substrate to a temperature of 60 °C. At this substrate temperature, the spatial selectivity of the direct writing was maintained with only a very weak contribution of purely
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • , Cairo 11727, Egypt Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea 10.3762/bjnano.15.88 Abstract Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity
  • digestive enzymes in the gastrointestinal tract can break down some medications before they reach the bloodstream [45]. In addition to this, lack of selectivity can minimize their effectiveness. Also, drug absorption may be high in detoxifying organs such as liver and kidneys, causing toxicity in those
  • become known as a promising tool for sensing applications in recent years [95]. With their large surface area, alginate nanoparticles provide space for the immobilization of sensing elements, allowing for enhanced sensitivity and selectivity [96]. Additionally, alginate nanoparticles possess excellent
PDF
Album
Review
Published 22 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • to detect a wide range of biomolecules, such as proteins, DNA, and antibodies. This article presents a comprehensive review of advancements in the architectures of FET-based biosensors aiming to enhance device performance in terms of sensitivity, detection time, and selectivity. The review
  • [27][28], surface-enhanced Raman spectroscopy [29][30], microfluidic-coupled biochip [31], electrochemical [32], and field-effect transistor (FET)-based biosensors [33]. Biosensors offer several distinct benefits for virus recognition, including higher selectivity through improved target receptors and
  • -end biosensing parts are made using gold electrode material and manufactured by a lithography process, liftoff technique, and metal evaporation process. It has been indicated that the proposed EG FET-based biosensors exhibit super selectivity and high sensitivity for a reliable detection of uric acid
PDF
Album
Review
Published 06 Aug 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • and U937. The primary objective is to find the structural fingerprints/features that govern cellular uptake selectivity for each cell line. The selective surface modifications of ENMOs could enhance the affinity of the nanoparticles for certain cell types while reducing the uptake by non-target cells
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024
Other Beilstein-Institut Open Science Activities