Search results

Search for "silicon dioxide" in Full Text gives 69 result(s) in Beilstein Journal of Nanotechnology.

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • dioxide [29][40][30]. Amorphous silicon dioxide (SiO2) has excellent chemical stability, well-understood surface chemistry, and compatibility with semiconductor processing, opening up new applications for track-etched nanopores in this material [30]. In this study, we report the characterization of track
  • -etched nanopores in two types of silicon dioxide, namely, one produced by wet thermal oxidation of Si (thermal SiO2) and another deposited by plasma-enhanced chemical vapor deposition (PECVD). Thermally grown SiO2 is of high quality and stoichiometric, however, requires high temperatures for growth, and
  • in thermal and PECVD SiO2 We utilized two types of amorphous silicon dioxide samples. The first type consisted of 1 μm thick thermally grown SiO2 on ⟨100⟩ Si substrates (300 μm thickness), obtained commercially from WaferPro Ltd, USA. The second type comprised PECVD-deposited SiO2 films (≈1.1 μm
PDF
Album
Full Research Paper
Published 12 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • leaflet of the investigated material, silicon dioxide plays the role of an anti-caking agent. Thus, any interaction with other components should be excluded, and only a trace of it was expected in the investigated samples. However, as the Si 2p XSP spectra show, this is not the case, so assuming that the
  • any combination of C and H atoms, whose quantity in the investigated samples is high due to the presence of sucrose and calcium alginate. It should also be added that Si 2p lines are observed for both samples, which is no surprise as silicon dioxide is insoluble in water. Figure 12c presents the XPS
PDF
Album
Full Research Paper
Published 02 Jun 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • , which is 25·1021 Ω, taking into account the electrical resistivity of silicon dioxide of [92] and a thickness of the SiO2 layer of 300 nm on an area of 9 μm2. The observed discrepancy may be attributed to the increased conductivity of the microcapacitors, which is a result of the incorporation of Ga
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • interaction with the walls. In a study of the deposition of silicon dioxide using an atmospheric-pressure plasma-enhanced CVD reactor, the reactor performance was shown to be strongly affected by the flow dynamics [33][34]. Distribution and concentration of species As previously mentioned, temperature and
PDF
Album
Full Research Paper
Published 17 Dec 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • telecommunications, sensing, and quantum optics applications, driving innovation in photonic technologies. We designed one-dimensional photonic crystals (1D PCs) made of lithium niobate with titanium dioxide and silicon dioxide using electromagenetic simulations. Our goal was to maximize reflectivity in the infrared
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • processing was simulated using the level set method and experimentally studied by milling a silicon dioxide layer covering a crystalline silicon substrate. The simulation took into account the redeposition of atoms simultaneously sputtered from both layers of the sample as well as the influence of
  • ; multilayer substrate; silicon; silicon dioxide; sputtering; Introduction The focused ion beam (FIB) technique is an effective method for surface nanostructuring. It is based on the local removal of material by sputtering with a narrow beam of, typically, gallium ions. This feature of the FIB method makes it
  • -based [21], level set [22][23][24], and Monte Carlo [25] methods. The most commonly studied materials are monocrystalline silicon [21][22][23] and amorphous silicon dioxide [24][25] because of their technological importance in microelectronics. More complex simulations of multilayer milling, which need
PDF
Album
Full Research Paper
Published 24 Jun 2024

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • silicon and five polymorphs of silicon dioxide SNAP [43]: the machine-learning-based (ML-IAP) linear variant of spectral neighbor analysis potential (SNAP) fitted to total energies and interatomic forces in ground-state Si, strained structures, and slab structures obtained from DFT calculations qSNAP [43
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • also been obtained by depositing Au thin films on Si substrates with a thick silicon dioxide (SiO2) layer and subsequent rapid heating in reducing atmosphere. Here, the Si vapor source is silicon monoxide (SiO) gas produced by the decomposition of the SiO2 layer or the active oxidation of the Si
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • by an unconventional wet route followed by melting [31][37][38]. As raw materials, the ultra-purity grade reagents boron oxide (B2O3), magnesium oxide (MgO,) potassium carbonate (K2CO3), phosphoric acid (H3PO4), silicon dioxide (SiO2), zinc oxide (ZnO), and cerium oxide (CeO2) have been used. The
PDF
Full Research Paper
Published 12 Dec 2022

Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Dmitrii A. Pimanov,
  • Ekaterina A. Matrozova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 865–872, doi:10.3762/bjnano.13.77

Graphical Abstract
  • GHz, the second half is occupied by cells for 240 GHz. Receiving cells with integrated CEBs are located on a 260 µm thick silicon substrate with a silicon dioxide layer. The difficulty of the considered receiving system is the existing specific sample holder, which allows the receiving of the signal
PDF
Album
Full Research Paper
Published 01 Sep 2022

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • non-toxic, according to two distinct categorisations based upon mortality data determined at 24 or 120 hpf for embryonic zebrafish continuously exposed to the ENMs via fish water test medium [31]. (One dataset entry corresponded to an ENM with a silicon dioxide core. Whilst silicon dioxide is
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • . Gracheva and co-workers prepared gas-sensitive fractal structures based on SnO2 and silicon dioxide (SiO2) by a sol–gel technique [57][69][70]. The evolution of fractal aggregates of tin and silicon dioxides resulted in the formation of spherical, labyrinth, and percolation network structures. The
PDF
Album
Supp Info
Review
Published 09 Nov 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • after 2–3 weeks [95]. In other work, hollow pyramidal silicon dioxide microneedle arrays, with heights of 150–200 μm, were made by oxidising microporous silicon produced by a combination of wet etching and electrochemistry [96]. Porous silicon microneedles may overcome the brittle properties of single
PDF
Album
Review
Published 13 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • ][37][38][39], while also B deposition was shown to result in effective passivation of the Si surface [40][41]. In particular for electronic devices, oxidized semiconductor surfaces (e.g., silicon dioxide layers formed on bare silicon) are mostly used as substrates for fabricating devices [42]. Most of
PDF
Editorial
Published 23 Aug 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • of bilayer MoS2 can be found in [63]. Chemical properties Local helium ion irradiation has also been shown to modify the chemical properties of a material, for example, chemical etch rates. In HIM studies by Petrov et al. irradiating silicon nitride [64][65] and silicon dioxide [66][67] with 1015
PDF
Album
Review
Published 02 Jul 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • Petronela Prepelita Florin Garoi Valentin Craciun National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-36, Magurele 077125, Ilfov, Romania 10.3762/bjnano.12.29 Abstract The influence of film thickness on the structural and optical properties of silicon
  • dioxide (SiO2) and zinc oxide (ZnO) thin films deposited by radio frequency magnetron sputtering on quartz substrates was investigated. The deposition conditions were optimized to achieve stoichiometric thin films. The orientation of crystallites, structure, and composition were investigated by X-ray
PDF
Album
Full Research Paper
Published 19 Apr 2021

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • experimental contrast match qualitatively. A quantitative analysis shows relevant differences in the intensity levels of the regions. The relative intensity level of the area with the layer of silicon dioxide on top of the silicon nitride differs considerably in experiment and simulation. The signal in the
  • area on which only gold is deposited is stronger than expected while the signal on the area on which only silicon dioxide is deposited is weaker. A further study on the thickness of each layer using different techniques has not been performed, although deviations of the layer thickness could be
  • angle from 8 to 13.9°. The scale bars are 1 μm. Bright-field image showing contrast due to the dependence of the exit angle on the material and the thickness of the layer. (a) Bright-field STIM image with collection angle from 0 to 4.5° of a silicon nitride membrane with silicon dioxide deposited on the
PDF
Album
Full Research Paper
Published 11 Dec 2020

Amorphized length and variability in phase-change memory line cells

  • Nafisa Noor,
  • Sadid Muneer,
  • Raihan Sayeed Khan,
  • Anna Gorbenko and
  • Helena Silva

Beilstein J. Nanotechnol. 2020, 11, 1644–1654, doi:10.3762/bjnano.11.147

Graphical Abstract
  • -switching process and not to the permanent and detrimental electrical breakdown failure that occurs in any dielectric material. Experimental The patterned GST-225 line cells used for this study were deposited on silicon dioxide (SiO2), had bottom metal contact pads (tungsten with Ti/TiN liner), and were
PDF
Album
Full Research Paper
Published 29 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • ion beam (FIB) technology can also be used to directly fabricate high-precision nanostructures on surfaces made of silicon, silicon dioxide and metal [27][28][29][30][31][32][33]. FIB technology is therefore used as a processing method for SERS substrates. Using the FIB method, Lin et al. [29
PDF
Album
Full Research Paper
Published 16 Oct 2020

Liquid crystal tunable claddings for polymer integrated optical waveguides

  • José M. Otón,
  • Manuel Caño-García,
  • Fernando Gordo,
  • Eva Otón,
  • Morten A. Geday and
  • Xabier Quintana

Beilstein J. Nanotechnol. 2019, 10, 2163–2170, doi:10.3762/bjnano.10.209

Graphical Abstract
  • material paves the way to the use of large wafers, well-known efficient microelectronic processes and remarkable cost savings. Silicon waveguides can be developed on silicon dioxide, resulting in silicon-on-insulator (SOI) wafer structures compatible to CMOS processes [5]. This opens the possibility of
PDF
Album
Full Research Paper
Published 05 Nov 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • hypothetical continuous film) of silver is e-beam deposited on a proper adhesion layer (for example silicon dioxide) [43][44]. The results of simulations and experimental studies show that the hot spots exist in SSFs [2][44][45][46][47], and hence they have been extensively studied as SERS substrates [40][41
  • was performed at room temperature. Glass substrates were first coated with 10 nm thick layer of silicon dioxide (SiO2). Next, without breaking vacuum, silver was deposited on the substrates. Two depositions were performed and in each of them several substrates were located at a different distance from
  • silver film was removed to form a step like structure with two distinct areas (glass with silicon dioxide and glass with silicon dioxide and silver film) of different height. A several micrometer square AFM scan (not presented) of such step-like structures provides an estimate of the SSF height but does
PDF
Album
Full Research Paper
Published 15 May 2019

Development of an anti-pollution coating process technology for the application of an on-site PV module

  • Sejin Jung,
  • Wonseok Choi,
  • Jung Hyun Kim and
  • Jang Myoun Ko

Beilstein J. Nanotechnol. 2019, 10, 332–336, doi:10.3762/bjnano.10.32

Graphical Abstract
  • -pollution characteristics of the PV modules contained silicon dioxide (SiO2), lithium (Li), and potassium (K). The viscosity, density, and specific gravity (referring to the density of water) of the coating solution were 0.01–0.03 kg/m·s, 1.1 g/cm3, and 1.13 ± 0.05, respectively. The solution can be used to
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2019

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • stress-driven artificial hair sensor. The fabrication process is subdivided into the following main steps: Depositing functional material layers: The flow sensor is based on a silicon-on-insulator (SOI) substrate which is made up of a 400 μm silicon wafer, a 2 μm thick silicon dioxide (SiO2) insulation
PDF
Album
Full Research Paper
Published 03 Jan 2019

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • “calibrating” the EFM technique for future interphase studies. EFM was demonstrated to be able to discriminate between alumina and silicon dioxide interphase layers of 50 and 100 nm thickness deposited over polystyrene spheres and different types of matrix materials. Consistent permittivity values were also
  • nm) were deposited or grown over the whole sample surface. Aluminum oxide (Al2O3) shells were prepared using the atomic layer deposition (ALD) method, polyvinyl acetate (PVAc) shells by spin coating, and silicon dioxide (SiO2) shells by plasma sputtering deposition (PSD). The signature of each
  • ) and stirred with a magnetic stirrer until no particulate was visible (around 30 min). The spinning program used for thin film deposition was: a) 100 rpm for 15 s, b) 500 rpm for 15 s, and c) 2000 rpm for 60 s, all with a ramp of 2000 rpm. Silicon dioxide thin films: plasma sputter deposition (PSD
PDF
Album
Full Research Paper
Published 07 Dec 2018

Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing

  • Xiaomo Xu,
  • Thomas Prüfer,
  • Daniel Wolf,
  • Hans-Jürgen Engelmann,
  • Lothar Bischoff,
  • René Hübner,
  • Karl-Heinz Heinig,
  • Wolfhard Möller,
  • Stefan Facsko,
  • Johannes von Borany and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2018, 9, 2883–2892, doi:10.3762/bjnano.9.267

Graphical Abstract
  • temperature, the diameter of an individual Si NC, 2rNC, has to be smaller than 5.7 nm. The other factors are the unit charge e and ε0 and εr = 3.9 are the vacuum permittivity and the relative permittivity of silicon dioxide, respectively. Recently, advanced lithographic methods [21] and directed self-assembly
PDF
Album
Full Research Paper
Published 16 Nov 2018
Other Beilstein-Institut Open Science Activities